knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
FORTLS is used for processing of point cloud data derived from terrestrial-based technologies such as Terrestrial Laser Scanning (TLS) or Simultaneous Localization and Mapping (SLAM). Point cloud data must be provided as .las or .laz files. The first obligatory step is the normalization of the point cloud applying the function normalize
. The obtained normalized point clouds serve as input data for the tree detection functions tree.detection.single.scan
, tree.detection.multi.scan
and tree.detection.several.plots
. The function tree.detection.single.scan
detects trees from normalized TLS single-scan data and tree.detection.multi.scan
from normalized TLS multi-scan (or SLAM) data. If data from more than one plot are to be analyzed automatically, the function tree.detection.several.plots
should be used, which includes both the normalization and the tree detection functions and executes these functions on each input plot sequentially.
dir.data <- getwd() download.file("https://www.dropbox.com/s/17yl25pbrapat52/PinusRadiata.laz?dl=1", destfile = file.path(dir.data, "PinusRadiata.laz"), mode = "wb") download.file("https://www.dropbox.com/scl/fi/es5pfj87wj0g6y8414dpo/PiceaAbies.laz?rlkey=ayt21mbndc6i6fyiz2e7z6oap&dl=1", destfile = file.path(dir.data, "PiceaAbies.laz"), mode = "wb") library(FORTLS)
The aim of the normalization process is to obtain the coordinates relative to the plot's center and the ground level. In this process, the functions readLAS
, clip_circle
, classify_ground
, grid_terrain
and normalize_height
from the lidR package are used internally (Roussel et al., 2020^[Roussel, J.R., Auty, D., Coops, N.C., Tompalski, P., Goodbody, T.R.H., Sanchez Meador, A., Bourdon, J.F., de Boissieu, F., Achim, A., 2020. lidR: an R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sens. Environ. 251, 112061 https://doi.org/10.1016/j.rse.2020.112061.]). The following steps are executed:
The following figure shows the normalized point cloud which is used as example data below. The function plot
from the lidR package is used to generate the figure.
singleLAS <- lidR::readLAS(paste(dir.data, "PinusRadiata.laz", sep = "/")) lidR::plot(singleLAS, color = "RGB")
normalize
The normalize
function is applied as follows:
pcd.single <- normalize(las = "PinusRadiata.laz", normalized = NULL, x.center = 0, y.center = 0, max.dist = 10, min.height = NULL, max.height = NULL, algorithm.dtm = "knnidw", res.dtm = 0.2, csf = list(cloth_resolution = 0.5), RGB = TRUE, scan.approach = "single", id = NULL, file = "single.txt", dir.data = dir.data, save.result = FALSE, dir.result = NULL)
The name of the .las or .laz file containing the point cloud data is introduced in las
argument and must include the .las/.laz extension. Optionally, the plot identification number (id
) and the file name (file
) can be defined. Both are set to NULL
by default, which assigns 1
to the plot identification number and 1.txt
(same name as the identification number) to the reduced point cloud saved in the working directory specified in dir.result
.
The directory of the input .las/.laz files and the output file can be specified in dir.data
and dir.result
respectively. If not specified, the current working directory is used. The output .txt files containing the reduced point clouds will be saved if not otherwise specified in save.result
(save.result = TRUE
by default).
If the point cloud in the input file was already normalized, the argument normalized
can be set to normalized = TRUE
(default setting normalized = NULL
). As a result, one part of the internal normalization process is skipped. Furthermore the scanning approach applied for data collection must be specified in scan.approach
with "single"
(set by default) indicating the TLS single-scan approach and "multi"
indicating the TLS multi-scan and SLAM point clouds approaches.
The planimetric coordinates $x$ and $y$ of the center are by default x.center = 0
and y.center = 0
. If this does not coincide with the point cloud data, the coordinates of the plot center must be specified by x.center
and y.center
.
Furthermore the size of the point cloud can be reduced by the arguments max.dist
, min.height
and max.height
. If the maximum horizontal distance in meter to the plot center (max.dist
) is set, points that are further away are discarded. Similarly, the minimum and maximum height in meters (min.height
, max.height
respectively) defines which points are discarded, that are those below the minimum height and those above the maximum height relative to the ground level. The default value for all three arguments is NULL
. Hence, no points are discarded from the point cloud after normalization.
normalize
functionIn order to generate the DTM, two different algorithms can be applied specified by algorithm.dtm
. Spatial interpolation based on a k-nearest neighbor approach with inverse-distance weighting (knnidw
) is selected by default. The second method is the Delaunay triangulation (tin
). The resolution of the DTM (res.dtm
) is set to 0.2 m by default but can be adjusted manually.
To adjust the CSF algorithm, a list with parameters (e.g. the cloth resolution which is set to 0.5 by default) can be introduced in csf
.
When the point clouds are colorized, the RGB values can be used to improve the normalization and tree detection process (RGB
). The colors serve to distinguish leaf from ground and stem points by the Green Leaf Algorithm (GLA, Louhaichi et al., 2001^[Louhaichi, M., Borman, M. M., & Johnson, D. E. (2001). Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International, 16(1), 65-70. doi:10.1080/10106040108542184]). If the GLA algorithm should be applied to remove some points from the point cloud (i.e. leaf points), it must be indicated by RGB = TRUE
.
The normalize
function generates the data frame shown below. Each row corresponds to one point of the point cloud of the input data. The columns id
, file
and point
indicate the plot identification number, the file name and the point number respectively. The following columns contain the normalized Cartesian, cylindrical and spherical coordinates x
(distance on x axis in m), y
(distance on y axis in m), z
(height relative to ground level in m), rho
(horizontal distance in m), phi
(angle in rad), r
(radial distance in m) and theta
(polar angle in rad). The column slope
displays the slope of the terrain given in rad. If the GLA algorithm was used, the column GLA
shows the results of that algorithm. Furthermore, a selection probability is assigned to each point by applying the PCP algorithm (prob
) and the column prob.select
shows the selected plots (indicated with 1) and discarded points (indicated with 0).
head(pcd.single)
kableExtra::scroll_box(kable_input = kableExtra::kable(head(pcd.single), format = "html"), width = "100%")
The .txt file saved to the directory indicated by dir.result
(if save.result = TRUE
) contains a similar data frame to that shown above. However, the data frame will only include the reduced point cloud, i.e. only the selected points (prob.select = 1
). The data frame is saved without row names as .txt file by using the vroom_write
function of the vroom package.
The tree detection functions include algorithms to detect as many trees as possible in the point clouds. Additionally, the diameter at 1.3 m above ground level (diameter at breast height, $dbh$) is estimated and the coordinates of the tree's center are calculated for each detected tree. Depending on the TLS approach, different tree detection functions should be used.
When the single-scan approach was used to collect the data, the function tree.detection.single.scan
can be applied as follows:
tls.resolution = list(point.dist = 6.34, tls.dist = 10) tree.list.single.tls <- tree.detection.single.scan(data = pcd.single, dbh.min = 4, dbh.max = 200, h.min = 1.3, ncr.threshold = 0.1, tls.resolution = tls.resolution, d.top = NULL, plot.attributes = NULL, breaks = 1.3, stem.range = NULL, stem.section = c(1,5), save.result = FALSE, dir.result = NULL)
The normalized and reduced point cloud, i.e. the output of the normalize
function, is the input data frame for this function (data
). The different arguments that can be specified are explained below.
With dbh.min
and dbh.max
, the range of possible tree diameters can be specified. Hence, only cluster of points with a bigger diameter than dbh.min
and a smaller diameter than dbh.max
will be considered as possible trees. Additionally, min.height
defines the minimum height of a possible tree or point cluster to be considered as a tree. If not manually specified, the values are set to dbh.min = 4
, dbh.max = 200
(values in cm) and h.min = 1.3
(value in m).
The resolution of the TLS scan (tls.resolution
) can be defined either by the aperture angle or the distance between to consecutive points. The aperture angle is determined by the horizontal and vertical aperture angles (horizontal.angle
and vertical.angle
). When choosing the angle to define the TLS resolution, both elements must be part of the list required in tls.resolution = list(horizontal.angle, vertical.angle)
. The second option to determine the resolution considers the distance of two consecutive points (point.dist
) at a certain distance from the TLS device (tls.dist
) also given in a list as it is shown in the example above.
In plot.attributes
a data frame with attributes at plot level (e.g. strata) can be inserted for additional information. This data frame must contain a column named id
coinciding with that used in the id
argument of the function normalize
. If there are strata, the column specifying the strata must be named stratum
(numeric) for other functions (e.g., estimation.plot.size
or metrics.variables
). If this argument is not specified, it will be set to NULL by default and the function will not add possible plot attributes.
In order to distinguish stem points from points belonging to thin branches or foliage, the local surface variation, also known as normal change rate (NCR) is calculated for each point. This is a quantitative measure of the curvature feature (Pauly et al., 2002^[Pauly, M., Gross, M., & Kobbelt, L. P., (2002). Efficient simplification of point-sampled surfaces. In IEEE Conference on Visualization. (pp. 163-170). Boston, USA. https://doi.org/10.1109/VISUAL.2002.1183771]). For each point, the NCR index is estimated in a local neighborhood with a radius of 5 cm. This radius is considered as suitable for the stem separation in forests (Ma et al. 2015^[Ma, L., Zheng, G., Eitel, J. U., Moskal, L. M., He, W., & Huang, H. (2015). Improved salient feature-based approach for automatically separating photosynthetic and nonphotosynthetic components within terrestrial lidar point cloud data of forest canopies. IEEE Transactions Geoscience Remote Sensing, 54(2), 679-696. https://doi.org/10.1109/TGRS.2015.2459716]; Xia et al., 2015^[Xia, S., Wang, C., Pan, F., Xi, X., Zeng, H., & Liu, H. (2015). Detecting stems in dense and homogeneous forest using single-scan TLS. Forests. 6(11), 3923-3945. https://doi.org/10.3390/f6113923]). Higher NCR values indicate more curved surfaces e.g. branches and foliage. Therefore, a threshold (ncr.threshold
) is established, which can be modified manually. By defalut it is set to 0.1 according to Zhang et al. (2019^[Zhang, W., Wan, P., Wang, T., Cai, S., Chen, Y., Jin, X., & Yan, G. (2019). A novel approach for the detection of standing tree stems from plot-level terrestrial laser scanning data. Remote Sens. 11(2), 211. https://doi.org/10.3390/rs11020211]), meaning that points with a higher NCR value than that threshold are discarded.
In order to improve the detection of trees, the point cloud is reduced by removing parts of it with no trees. The argument stem.section
serves to identify the part of the point cloud, i.e. a range of the coordinate $z$, which contains less bushes, branches or other disruptive points. Hence, a range of the coordinate $z$ and therefore a belt-like area is selected, either by defining the range manually or by an internal algorithm. This belt-like area includes predominantly the stems of the trees. Within this horizontal area, point clusters with higher density are chosen, which are supposedly the stems of the trees. Applying a circular buffer around the stems, vertical cylinders are created, which contain the stems. In the following algorithms only these vertical cylindrical parts of the point cloud are used to detect trees.
After the cylinders have been selected from the point cloud, breaks
defines the height (in m) of horizontal slices on which the tree detection algorithms are applied. If not otherwise specified, slices are taken every 0.3 m starting at a height of 0.4 m until reaching the maximum height. The slices have a extension of 0.1 m (height of slice +/- 5 cm). On each slice the following algorithms are applied:
ncr.threshold
)dbscan
function of the dbscan package is used to perform the clustering. The radius of the epsilon neighborhood (eps
) is defined as the minimum distance between two consecutive points at the furthest distance from the plot center in the respective horizontal sliceAs explained above, these algorithms are applied on all horizontal slices (defined by breaks
). Thus, tree sections are identified at different heights. Those sections that belong to the same tree are joined by applying the DBSCAN algorithm on the horizontal projection of the different sections. Thereafter, tree attributes can be estimated.
The diameter of the detected trees ($dbh$) is obtained at 1.3 m as the double of radius. If the tree is not detected in the section at 1.3 m, the $dbh$ is estimated by fitting a linear taper function with radius as response variable and the section heights as explanatory variables. Thus, this function allows to estimate the radius at 1.3 m and to calculate $dbh$.
The argument d.top
defines the top stem diameter (in cm), which is used for the calculation of the commercial stem volume. If this argument is not specified, the commercial stem volume (v.com
) is not calculated.
head(tree.list.single.tls)
tree.list.single.tls <- read.csv(paste(dir.data, "tree.list.single.tls.csv", sep = "/")) kableExtra::scroll_box(kable_input = kableExtra::kable(head(tree.list.single.tls), format = "html"), width = "100%")
The data frame shown above is the output of the tree.detect.single.scan
function. Each row represents a detected tree (consecutively numbered in the column tree
). The columns id
and file
display the plot identification number and the file name respectively equal to the columns in the normalize
output table. The coordinates of the detected trees are given as Cartesian coordinates of the tree's center (x
and y
, in m) and azimuthal angles of the center (phi
in rad), the left border (phi.left
in rad), the right border (phi.right
in rad) and the horizontal distance from the tree's center to the plot's center (h.dist
in m).
Furthermore, the tree attributes dbh
(diameter at breast height in cm), h
(total height in m), v
(tree stem volume in m$^3$) are estimated. If d.top
was defined as argument, the volume of the stem from the ground to the height of the diameter given in d.top
is estimated (commercial stem volume, v.com
in m$^3$).
For each tree, the number of points of the normal section slice (1.3 m +/- 0.05 m) of the original point cloud and the reduced point cloud (n.pts
and n.pts.red
respectively) are calculated and also estimated (n.pts.est
and n.pts.red.est
respectively). The column partial.occlusion
describes whether the the detected tree is partially occluded (1) or not (0).
The data frame is saved as .csv file without row names using the write.csv
function from the utils package.
When multiple scans were performed in the same sampling plot (multi-scan approach) or SLAM devices were used, the function tree.detection.multi.scan
can be applied as follows below. Additionally, the function normalize
must be adjusted by specifying scan.approach = "multi"
.
pcd.multi <- normalize(las = "PiceaAbies.laz", x.center = 0, y.center = 0, scan.approach = "multi", file = "multi.txt", dir.data = dir.data, save.result = FALSE) tree.list.multi.tls <- tree.detection.multi.scan(data = pcd.multi, dbh.min = 4, dbh.max = 200, h.min = 1.3, slice = 0.15, ncr.threshold = 0.1, tls.precision = 0.05, breaks = NULL, stem.section = c(1,5), d.top = NULL, plot.attributes = NULL, save.result = FALSE, dir.result = NULL)
The function tree.detection.multi.scan
comes along with the same arguments as the function tree.detection.single.scan
, which are described in "Data from TLS single-scan approach". However, instead of specifying the resolution, the precision of the TLS (in m) can be defined in tls.precision
. If not defined, the default value is 0.03 m. The procedure remains the same and the output data frame contains the all the columns explained above:
head(tree.list.multi.tls)
tree.list.multi.tls <- read.csv(paste(dir.data, "tree.list.multi.tls.csv", sep = "/")) kableExtra::scroll_box(kable_input = kableExtra::kable(head(tree.list.multi.tls), format = "html"), width = "100%")
The following figure shows the same point cloud ("PiceaAbies.laz"
) as above. The trees that were detected by the tree.detection.multi.scan
function are labeled with a red belt at 1.3 m.
diameter <- readLAS(paste(dir.data, "diameters.laz", sep = "/")) lidR::plot(singleLAS, color = "RGB", add = plot(diameter, color = "Intensity"))
If data from multiple plots are to be analysed, the function tree.detection.several.plots
can be used. This function conducts both normalization and tree detection processes for each plot automatically. The result tables (as explained above) are stored directly and separately for each plot. Hence, if an error occurs in one plot, the results of the previously analysed plots are stored.
In the function, the arguments for both the normalize
and tree.detection
functions must be specified as explained above. The function is applied as follows:
tls.resolution = list(point.dist = 7.67, tls.dist = 10) tree.list.tls <- tree.detection.several.plots(las.list = c("PinusSylvestris1.laz", "PinusSylvestris2.laz"), id = NULL, file = NULL, scan.approach = "single", x.center = 0, y.center = 0, max.dist = 10, min.height = 0.1, max.height = NULL, algorithm.dtm = "knnidw", res.dtm = 0.2, csf = list(cloth_resolution = 0.5), dbh.min = 7, dbh.max = 200, h.min = 1.3, tls.resolution = tls.resolution, ncr.threshold = 0.05, breaks = 1.3, stem.section = c(0.5, 4), d.top = NULL, plot.attributes = NULL, dir.data = dir.data, save.result = FALSE, dir.result = NULL)
The names of the .las files have to be introduced as a character vector in las.list
. Optionally, vectors with the plot identification numbers and the file names can be specified in id
and file
. If not specified, the plots will be named with correspondent numbers from 1 to n plots (id
) and their respective id
in "id.txt" as file names. The other arguments can be specified as explained in the sections above.
The input files are analysed successively. After finishing the analysis of one plot, the reduced point cloud as .txt file and the tree list as .csv file are saved to the directory indicated in dir.results
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.