| LDA | R Documentation |
Calculates a LDA on Coe on top of MASS::lda.
LDA(x, fac, retain, ...)
## Default S3 method:
LDA(x, fac, retain, ...)
## S3 method for class 'PCA'
LDA(x, fac, retain = 0.99, ...)
x |
a Coe or a PCA object |
fac |
the grouping factor (names of one of the $fac column or column id) |
retain |
the proportion of the total variance to retain (if retain<1) using scree, or the number of PC axis (if retain>1). |
... |
additional arguments to feed lda |
a 'LDA' object on which to apply plot.LDA, which is a list with components:
x any Coe object (or a matrix)
fac grouping factor used
removed ids of columns in the original matrix that have been removed since constant (if any)
mod the raw lda mod from lda
mod.pred the predicted model using x and mod
CV.fac cross-validated classification
CV.tab cross-validation tabke
CV.correct proportion of correctly classified individuals
CV.ce class error
LDs unstandardized LD scores see Claude (2008)
mshape mean values of coefficients in the original matrix
method inherited from the Coe object (if any)
For LDA.PCA, retain can be passed as a vector (eg: 1:5, and retain=1, retain=2, ..., retain=5) will be tried, or as "best" (same as before but retain=1:number_of_pc_axes is used).
Silent message and progress bars (if any) with options("verbose"=FALSE).
Other multivariate:
CLUST(),
KMEANS(),
KMEDOIDS(),
MANOVA_PW(),
MANOVA(),
MDS(),
MSHAPES(),
NMDS(),
PCA(),
classification_metrics()
bot.f <- efourier(bot, 24)
bot.p <- PCA(bot.f)
LDA(bot.p, 'type', retain=0.99) # retains 0.99 of the total variance
LDA(bot.p, 'type', retain=5) # retain 5 axis
bot.l <- LDA(bot.p, 'type', retain=0.99)
plot_LDA(bot.l)
bot.f <- mutate(bot.f, plop=factor(rep(letters[1:4], each=10)))
bot.l <- LDA(PCA(bot.f), 'plop')
plot_LDA(bot.l) # will replace the former soon
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.