l1_p: l1_p

View source: R/l1_p.R

l1_pR Documentation

l1_p

Description

Estimates non crossing quantile regression with a neural network.

Usage

l1_p(
  X,
  y,
  test_X,
  valid_X,
  tau,
  hidden_dim1,
  hidden_dim2,
  learning_rate,
  max_deep_iter,
  lambda_obj,
  penalty = 0
)

Arguments

X

train predictor data

y

train response data

test_X

test predictor data

valid_X

validation predictor data

tau

target quantiles

hidden_dim1

the number of nodes in the first hidden layer

hidden_dim2

the number of nodes in the second hidden layer

learning_rate

learning rate in the optimization process

max_deep_iter

the number of iterations

lambda_obj

the value of tuning parameter in the l1 penalization method

penalty

the value of tuning parameter for ridge penalty on weights

Value

y_predicted, y_test_predicted, y_valid_predited : predicted quantile based on train, test, and validation data, respectively


Monster-Moon/l1pm documentation built on July 20, 2024, 6:55 p.m.