l1_p | R Documentation |
Estimates non crossing quantile regression with a neural network.
l1_p(
X,
y,
test_X,
valid_X,
tau,
hidden_dim1,
hidden_dim2,
learning_rate,
max_deep_iter,
lambda_obj,
penalty = 0
)
X |
train predictor data |
y |
train response data |
test_X |
test predictor data |
valid_X |
validation predictor data |
tau |
target quantiles |
the number of nodes in the first hidden layer | |
the number of nodes in the second hidden layer | |
learning_rate |
learning rate in the optimization process |
max_deep_iter |
the number of iterations |
lambda_obj |
the value of tuning parameter in the l1 penalization method |
penalty |
the value of tuning parameter for ridge penalty on weights |
y_predicted, y_test_predicted, y_valid_predited : predicted quantile based on train, test, and validation data, respectively
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.