anisLinearKinhom: Inhomogeneous K-function accounting for directions

Description Usage Arguments Details Value Note Author(s) References See Also Examples

View source: R/anisLinearKinhom.R

Description

Inhomogeneous K-function accounting for directions

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
anisLinearKinhom(
  X,
  lambda = lambda,
  normalize = TRUE,
  r = NULL,
  phi = NULL,
  maxphi = 360,
  edge = TRUE,
  nxy = 10,
  parallel = FALSE,
  verbose = FALSE,
  ...
)

Arguments

X

an object of class lpp

lambda

estimated intensity at data points. If not given, it will be automatically obtained from densityQuick.lpp

normalize

logical. whether to normalize the estimate. See linearKinhom

r

optional. distance vector wherein the K-funtion is evaluated

phi

optional. angle vector wherein the K-funtion is evaluated

maxphi

max angle. this will be used only when phi is not given

edge

optional. whether to use edge correction or not

nxy

dimension. this will be considered as the length of r and phi when they are not given

parallel

logical. if TRUE, it uses mclapply.

verbose

logical. if TRUE, it prints the progress of the function.

...

arguments passed to mclapply for configuration of the cores.

Details

This function calculates the inhomogeneous K-function over a grid of distances and angles.

Value

an object of class sumlpp

Note

this function can be quite slow, we suggest to use nnangle.lpp

Author(s)

Mehdi Moradi m2.moradi@yahoo.com

References

Moradi, M., Mateu, J,. and Comas, C. (2020) Directional analysis for point patterns on linear networks. Stat.

See Also

linearKinhom

Examples

1
2
3
# generate random relaisations
X <- rpoislpp(0.001,branchnet)
K <- anisLinearKinhom(X)

Moradii/anisotropylpp documentation built on Oct. 22, 2020, 7:05 a.m.