View source: R/ad_gmix_trainscript.R
ad_gmix_trainscript | R Documentation |
Interface to Baggenstoss'es EM-Algorithm to calculate Gaussian Mixture Model for given data.
ad_gmix_trainscript(Parm, Data, Nit, SamplesPerMode=NULL, Bias=0, Maxclose=NULL, Addmodes=1, KurtosisThreshold=1.0, Verbose=0)
Parm |
Nested list with parameters for GMM. Features carrying permanent values. Features$name [1:d] String vector with feature names. Features$min_std [1:NMODE] Vector of covariance constraints. Modes carrying modifyable values. Modes$cholesky_covar [d*NMODE, d] Numerical matrix with NMODE many square matrices stacked vertically with the covariance matrix. Modes$mean [1:NMODE, d] Numerical matrix with nmode different means and d feature dimensions. Modes$weight [1, 1:NMODE] Numerical matrix with weights for each mean. |
Data |
[1:n,1:d] Numerical matrix with normalized data. N samples with DIM feature dimensions. |
Nit |
Numerical value: max number of iterations. |
SamplesPerMode |
Optional: Numerical value: Samples-per-mode (minimum for pruning). Default: 4*d. |
Bias |
Optional: Binary value: Covariance constraint method. Choose: 1=BIAS, 0=CONSTRAINT. Default=0. |
Maxclose |
Optional: Numerical value: Maximum mode closeness. Use more negative values to promote mode consolidation. Use higher values for larger dimension (Default: Suggestion: -2 * d). |
Addmodes |
Optional: 0 or 1 value: If set to 1, will use kurt.m to split modes. Default = 1. |
KurtosisThreshold |
Optional: Default=1.0. Numerical value: Kurtosis and Skew threshold for mode splitting. Should be about 1.0. Higher values (i.e. 1.2) will make mode splitting less likely. |
Verbose |
Optional: Optional: 0, 1 or 2. 0 = no output, 1 = messages, 2 = messages + plot. Default ==0. Print some outputs. |
List with multiple elements of different data structures:
EMmean |
[1:l,1:d] Numerical matrix carrying L means row wise. |
EMCov |
[1:(l*d),1:d] Numerical matrix with all covariance matrices appended beneath each other. |
EMalpha |
[1:l] Vector with wights for all L modes. |
EMParams |
Nested list with parameters for GMM. EMParams is the adapted or trained input variable Parm, see input argument Parm. |
Quirin Stier
Baggenstoss, Paul M., and T. E. Luginbuhl.: An EM algorithm for joint model estimation. IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258), Phoenix, AZ, USA, 1999, pp. 1825-1828 vol.4, IEEE, doi:10.1109/ICASSP.1999.758276, 1999.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.