| tSNE | R Documentation | 
T-distributed Stochastic Neighbor Embedding res = tSNE(Data, KNN=30,OutputDimension=2)
tSNE(DataOrDistances,k,OutputDimension=2,Algorithm='tsne_cpp', method="euclidean",Whitening=FALSE, Iterations=1000,PlotIt=FALSE,Cls,...)
| DataOrDistances | Numerical matrix defined as either 
 or 
 | 
| k | number of k nearest neighbors=number of effective nearest neighbors("perplexity"); Important parameter. If not given, settings of packages of t-SNE will be used depending  | 
| OutputDimension | Number of dimensions in the Outputspace, default=2 | 
| Algorithm | tsne_cpp': T-Distributed Stochastic Neighbor Embedding using a Barnes-HutImplementation in C++ of Rtsne 'tsne_r': pure R implementation of the t-SNE algorithm of of tsne | 
| method | method specified by distance string: 'euclidean','cityblock=manhatten','cosine','chebychev','jaccard','minkowski','manhattan','binary' | 
| Whitening | A boolean value indicating whether the matrix data should be whitened (tsne_r) or if pca should be used priorly (tsne_cpp) | 
| Iterations | maximum number of iterations to perform. | 
| PlotIt | Default: FALSE, If TRUE: Plots the projection as a 2d visualization. OutputDimension>2: only the first two dimensions will be shown | 
| Cls | [1:n,1] Optional,: only relevant if PlotIt=TRUE. Numeric vector, given Classification in numbers: every element is the cluster number of a certain corresponding element of data. | 
| ... | Further arguments passed on to either 'Rtsne' or 'tsne' | 
An short overview of different types of projection methods can be found in [Thrun, 2018, p.42, Fig. 4.1] (doi: 10.1007/978-3-658-20540-9).
List of
| ProjectedPoints | [1:n,OutputDimension], n by OutputDimension matrix containing coordinates of the Projection | 
| ModelObject | NULL for tsne_r, further information if tsne_cpp is selected | 
A wrapper for Rtsne
or  for tsne
You can use the standard ShepardScatterPlot or the better approach through the ShepardDensityPlot of the CRAN package DataVisualizations.
Michael Thrun
data('Hepta')
Data=Hepta$Data
Proj=tSNE(Data,k=7)
## Not run: 
PlotProjectedPoints(Proj$ProjectedPoints,Hepta$Cls)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.