Description Usage Arguments Value References
EM algorithm for mixture of RES distributions defined by g, psi
1 2 |
data |
Matrix[N, r] data without labels |
ll |
scalar, number of clusters |
g |
function(t), gauss |
reg_value |
list
mu_hat matrix[r, ll] Estimate of cluster centers
S_hat array[r, r, ll] Estimate of cluster scatter matrices
t matrix[N, ll] Squared Mahalanobis distances of each point to each cluster
R matrix[N, ll] Estimate of the posterior probabilites per cluster.
F. K. Teklehaymanot, M. Muma, and A. M. Zoubir, "Bayesian Cluster Enumeration Criterion for Unsupervised Learning", IEEE Trans. Signal Process. (accepted), [Online-Edition: https://arxiv.org/abs/1710.07954v2], 2018.
F. K. Teklehaymanot, M. Muma, and A. M. Zoubir, "Novel Bayesian Cluster Enumeration Criterion for Cluster Analysis With Finite Sample Penalty Term", in Proc. 43rd IEEE Int. conf. on Acoustics, Speech and Signal Process. (ICASSP), pp. 4274-4278, 2018, [Online-Edition: https://www.researchgate.net/publication/322918028]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.