qdev | R Documentation |
Functions for calculating sum of squared differences between a set of "observed" parameter values and corresponding model distribution parameters
qdev.TNO(par, obs, prob)
qdev.LOGNO(par, obs, prob)
qdev.WEI(par, obs, prob)
qdev.ZEXP(par, obs, prob)
qdev.GA(par, obs, prob)
qdev.PO(par, obs, prob)
qdev.NBII(par, obs, prob)
qdev.ZIP(par, obs, prob)
par |
double length=2 parameter values for theoretical distribution |
obs |
double length=3 observed first quantile, expected value, and second quantile |
prob |
double length=2 probabilities corresponding to the quantiles,
i.e. |
Functions qdev.TNO, qdev.LOGNO, qdev.WEI, qdev.ZEXP, qdev.GA, qdev.PO, qdev.NBII, qdev.ZIP
return the sum of squared differences between the expected value (obs[2]
) and two
quantiles (obs[1], obs[3]
) from an empirical distribution and ditto predicted from
respectively a given truncated normal-, lognormal-, Weibull-, zero-inflated exponential-,
gamma-, Poisson-, negative binomial-, and zero-inflated poisson distribution with parameters
par
. The lower bound in the truncated normal distribution is always zero, while the
upper bound is infinity. With these restrictions all theoretical distributions have two parameters,
except the Poisson with only one parameter.
All functions return an unnamed object of length=1 with the sum of squared differences
All functions programmed by Nigel Yoccoz except qdev.ZEXP programmed by Bård Pedersen
qdev.TNO(par = c(1,1), obs = c(0.1, 1.3, 2), prob = c(0.025, 0.975))
qdev.LOGNO(par = c(1,1), obs = c(0.1, 1.3, 2), prob = c(0.025, 0.975))
qdev.WEI(par = c(1,1), obs = c(0.1, 1.3, 2), prob = c(0.025, 0.975))
qdev.ZEXP(par = c(1,1), obs = c(0.1, 1.3, 2), prob = c(0.025, 0.975))
qdev.ZIP(par = c(1,1), obs = c(0.1, 1.3, 2), prob = c(0.025, 0.975))
qdev.NBII(par = c(1,1), obs = c(0.1, 1.3, 2), prob = c(0.025, 0.975))
qdev.PO(par = c(1,1), obs = c(0.1, 1.3, 2), prob = c(0.025, 0.975))
qdev.GA(par = c(1,1), obs = c(0.1, 1.3, 2), prob = c(0.025, 0.975))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.