neyman.unif.test: Neyman-Barton test for uniformity

Description Usage Arguments Details Value Author(s) References Examples

View source: R/neyman.unif.test.r

Description

Performs Neyman-Barton test for the hypothesis of uniformity.

Usage

1
neyman.unif.test(x, nrepl=2000, k=5)

Arguments

x

a numeric vector of data values.

nrepl

the number of replications in Monte Carlo simulation.

k

the number of Legendre polynomials.

Details

The Neyman-Barton test for uniformity is based on the following statistic:

N_k = ∑_{j=1}^{k}{≤ft(\frac{1}{√{n}}∑_{i=1}^{n}{π_j(x_i)}\right)^2},

where π_j(x_i) are Legendre polynomials orthogonal on the interval [0,1].

The p-value is computed by Monte Carlo simulation.

Value

A list with class "htest" containing the following components:

statistic

the value of the Neyman-Barton statistic.

p.value

the p-value for the test.

method

the character string "Neyman-Barton test for uniformity".

data.name

a character string giving the name(s) of the data.

Author(s)

Maxim Melnik and Ruslan Pusev

References

Neyman J. "Smooth" test for goodness-of-fit // Scand. Aktuarietidsrift. 1937. V. 20. P. 149-199.

Examples

1
2
neyman.unif.test(runif(100,0,1))
neyman.unif.test(runif(100,0.1,0.9))

NeKp0T/uniftest documentation built on Dec. 1, 2019, 12:33 a.m.