calculate_cdr_plus_nacc_ftld: Calculate Global CDR® plus NACC FTLD Rating

View source: R/calculate_cdr_plus_nacc_ftld.R

calculate_cdr_plus_nacc_ftldR Documentation

Calculate Global CDR® plus NACC FTLD Rating

Description

calculate_cdr_plus_nacc_ftld() calculates the global CDR® plus NACC FTLD score as described by Miyagawa et al. (2020). The default arguments expect CDR variable names as defined by the NACC, but custom variable names can be assigned to each of these arguments.

See Form B4: CDR® Dementia Staging Instrument and pages 91-92 of the UDS3 Coding Guidebook

Usage

calculate_cdr_plus_nacc_ftld(
  .data,
  MEMORY = MEMORY,
  ORIENT = ORIENT,
  JUDGMENT = JUDGMENT,
  COMMUN = COMMUN,
  HOMEHOBB = HOMEHOBB,
  PERSCARE = PERSCARE,
  COMPORT = COMPORT,
  CDRLANG = CDRLANG
)

Arguments

.data

dataframe object

MEMORY

CDR memory score

ORIENT

CDR orientation score

JUDGMENT

CDR judgement score

COMMUN

CDR community? score

HOMEHOBB

CDR home acitivites and hobbies score

PERSCARE

CDR personal care score

COMPORT

CDR behavior score

CDRLANG

CDR language score

Value

An object of the same type as .data. The output has the following properties:

  • Rows are not affected.

  • Data frame attributes are preserved.

  • Groups are maintained; you can't select off grouping variables.

  • The returned data frame includes a new variable labeled cdr_plus_nacc_ftld.

Examples

nacc_cdr_data_simulated %>%
   select(-NACCID,-VISITDATE) %>% # limit columns in final output for readability purposes
   calculate_cdr_plus_nacc_ftld()
## # A tibble: 100 × 9
##    MEMORY ORIENT JUDGMENT COMMUN HOMEHOBB PERSCARE COMPORT CDRLANG cdr_plus_nacc_ftld
##     <dbl>  <dbl>    <dbl>  <dbl>    <dbl>    <dbl>   <dbl>   <dbl>              <dbl>
##  1      2    0.5      0.5    0        2        3       1       0.5                  2
##  2      0    0.5      0      0        0.5      0       3       0.5                  2
##  3      0    1        2      2        0        0.5     0       0.5                  2
##  4      1    0.5      1      0.5      0        1       0       2                    1
##  5      1    0.5      0      0        0        0       0       1                    1
##  6      0    0        0      0        0        0       0       0                    0
##  7      1    2        0      0.5      0        0       0.5     0                    1
##  8      1    1        0.5    0        0        0.5     2       0                    1
##  9      2    0.5      1      0        3        0.5     0.5     0.5                  2
## 10      1    1        0      0.5      0        1       0       0                    1
## # … with 90 more rows

NeuroShepherd/RankinLabTools documentation built on Sept. 23, 2022, 5:31 p.m.