This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.
#load packages library(batchanalytics) library(bupaR) library(bamalog) library(tidyr) library(readr) library(lubridate)
#patients artificial but start and end times #sepsis, roadtraffic, #df <- patients #df <- sepsis #df <- hospital_billing df <- traffic_fines #check the batch_anayltics sample for different read in from so after git import everyone can use this -> no path visible #setwd("C:\\Users\\Niklas\\Desktop\\BachelorArbeit\\EventLogs\\real_world_event_logs") #lib batch ana verwenden - check ob neuster stand #csv_log <- read.csv("1k_Filtered data of BPI Challenge 2017.csv") #print(head(csv_log))
#adding timestamp cols df$arrival <- as.POSIXct(df$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "GMT") df$start <- as.POSIXct(df$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "GMT") df$complete <- as.POSIXct(df$timestamp, format = "%Y-%m-%d %H:%M:%S", tz = "GMT") head(df)
names(df)
#"case_id","activity","resource","arrival","start","complete","instance_id" und lifecycle #create new table newtable <- cbind( df[1], df[2],df[4], df[19], df[20], df[5],df[17], df[3]) head(newtable)
#add arrival col with minus 5 min from start -< posixct = seconds from.. newtable$arrival <- as.POSIXct(df$arrival - 10*60 ) newtable$start <- as.POSIXct(df$start - 5*60 ) head(newtable)
#filter most frequent cases t1 <- newtable %>% eventlog( case_id = "case_id", activity_id = "activity", activity_instance_id = "activity_instance_id", lifecycle_id = "lifecycle", timestamp = "timestamp",#vorher complete resource_id = "resource" ) %>% filter_trace_frequency(percentage = 0.15)
#create data frame format names(task_log) <- c("case_id", "activity", "resource", "arrival", "start", "complete","instance_id" ) task_log <- cbind( t1[1], t1[2],t1[3], t1[4], t1[5], t1[6],t1[7]) head(task_log)
#convert like bipc 2017 names(task_log) <- c("case_id", "activity", "resource", "arrival", "start", "complete","instance_id" )
head(t1) class(t1) #write transformed log to csv #write.csv(df, "C:\\Users\\Niklas\\Desktop\\BachelorArbeit\\EventLogs\\real_world_event_logs\\sepsis_filtered.csv", row.names = FALSE) #code besser in funktion -< refaktor dann kein doppelten code #maybe safe in gitHub -> how did i transform my event log ; creation of event log short describtion
# write #check before exe write.csv(task_log, "C:\\Users\\Niklas\\Desktop\\BachelorArbeit\\EventLogs\\real_world_event_logs\\traffic.csv", row.names = FALSE)
setwd("C:\\Users\\Niklas\\Desktop\\BachelorArbeit\\EventLogs\\real_world_event_logs") csv_log <- read.csv("traffic_fines_ready_for_analysis.csv") #class(csv_log)
#fix na vals issue csv_log$resource[is.na(csv_log$resource)] <- "ResX" head(csv_log)
# write #check before exe write.csv(csv_log, "C:\\Users\\Niklas\\Desktop\\BachelorArbeit\\EventLogs\\real_world_event_logs\\traffic_fines_ready_for_analysis.csv", row.names = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.