Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* Approach: independence
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Month Day
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -4.537 8.269 17.517 -5.581 -3.066
2: 2 42.44 2.250 -3.345 -5.232 -5.581 -1.971
3: 3 42.44 3.708 -18.610 -1.440 -2.541 1.316
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* Approach: independence
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Month Day
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -4.537 8.269 17.517 -5.581 -3.066
2: 2 42.44 2.250 -3.345 -5.232 -5.581 -1.971
3: 3 42.44 3.708 -18.610 -1.440 -2.541 1.316
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* Approach: empirical
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Month Day
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -13.252 15.541 12.826 -5.77179 3.259
2: 2 42.44 2.758 -3.325 -7.992 -7.12800 1.808
3: 3 42.44 6.805 -22.126 3.730 -0.09234 -5.885
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
-- Explanation overview --
* Model class: <lm>
* Approach: empirical
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 20 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Month Day
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -13.143 16.584 13.624 -6.3475 1.884
2: 2 42.44 3.044 -4.511 -8.918 -6.1276 2.632
3: 3 42.44 5.599 -23.352 4.228 -0.8872 -3.156
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
-- Explanation overview --
* Model class: <lm>
* Approach: empirical
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 20 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Month Day
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -14.780 14.745 13.447 -3.975 3.164
2: 2 42.44 4.254 -3.284 -7.536 -9.798 2.485
3: 3 42.44 4.144 -20.306 2.532 3.106 -7.043
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
Condition
Warning:
! Using empirical.type = 'independence' for approach = 'empirical' is deprecated.
Please use approach = 'independence' instead.
Message
-- Explanation overview --
* Model class: <lm>
* Approach: empirical
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
i `empirical.eta` force set to 1 for `empirical.type` = 'independence'.
i `empirical.eta` force set to 1 for `empirical.type` = 'independence'.
i `empirical.eta` force set to 1 for `empirical.type` = 'independence'.
i `empirical.eta` force set to 1 for `empirical.type` = 'independence'.
i `empirical.eta` force set to 1 for `empirical.type` = 'independence'.
i `empirical.eta` force set to 1 for `empirical.type` = 'independence'.
i `empirical.eta` force set to 1 for `empirical.type` = 'independence'.
i `empirical.eta` force set to 1 for `empirical.type` = 'independence'.
i `empirical.eta` force set to 1 for `empirical.type` = 'independence'.
i `empirical.eta` force set to 1 for `empirical.type` = 'independence'.
Output
explain_id none Solar.R Wind Temp Month Day
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -4.537 8.269 17.517 -5.581 -3.066
2: 2 42.44 2.250 -3.345 -5.232 -5.581 -1.971
3: 3 42.44 3.708 -18.610 -1.440 -2.541 1.316
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
-- Explanation overview --
* Model class: <lm>
* Approach: empirical
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 8 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Month Day
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -9.778 1.983 16.038 1.983 2.37679
2: 2 42.44 6.833 -5.547 -9.636 -5.547 0.01837
3: 3 42.44 6.895 -11.847 3.643 -11.847 -4.41122
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
-- Explanation overview --
* Model class: <lm>
* Approach: empirical
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 8 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Month Day
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -9.778 1.983 16.038 1.983 2.37679
2: 2 42.44 6.833 -5.547 -9.636 -5.547 0.01837
3: 3 42.44 6.895 -11.847 3.643 -11.847 -4.41122
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* Approach: gaussian
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Month Day
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -8.645 7.842 14.4120 0.535 -1.5427
2: 2 42.44 4.751 -4.814 -11.6985 -1.132 -0.9848
3: 3 42.44 7.339 -25.590 0.2717 -0.562 0.9729
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* Approach: copula
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Month Day
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -6.512 7.341 14.357 -0.5201 -2.064
2: 2 42.44 3.983 -4.656 -10.001 -1.8813 -1.324
3: 3 42.44 6.076 -25.219 1.754 -1.3488 1.169
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* Approach: ctree
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Month Day
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -9.198 9.679 16.925 -1.3310 -3.473
2: 2 42.44 5.283 -6.046 -8.095 -2.7998 -2.222
3: 3 42.44 6.984 -20.837 -4.762 -0.1545 1.201
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* Approach: vaeac
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Month Day
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.4 -4.94 7.50 17.47 -4.355 -3.069
2: 2 42.4 1.82 -5.19 -8.94 0.071 -1.638
3: 3 42.4 4.53 -20.29 3.17 -4.285 -0.698
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 16`, and is therefore set to `2^n_features = 16`.
-- Explanation overview --
* Model class: <lm>
* Approach: ctree
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 4
* Number of observations to explain: 3
-- Main computation started --
i Using 16 of 16 coalitions.
Output
explain_id none Month_factor Ozone_sub30_factor Solar.R_factor Wind_factor
<int> <num> <num> <num> <num> <num>
1: 1 42.44 -5.719 15.22 -6.220 -3.791
2: 2 42.44 -5.687 -17.48 22.095 -13.755
3: 3 42.44 6.839 -21.90 1.997 -5.301
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 16`, and is therefore set to `2^n_features = 16`.
-- Explanation overview --
* Model class: <lm>
* Approach: vaeac
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 4
* Number of observations to explain: 3
-- Main computation started --
i Using 16 of 16 coalitions.
Output
explain_id none Month_factor Ozone_sub30_factor Solar.R_factor Wind_factor
<int> <num> <num> <num> <num> <num>
1: 1 42.4 -1.97 12.6 -4.72 -6.38
2: 2 42.4 -2.41 -14.4 14.43 -12.47
3: 3 42.4 2.76 -14.2 3.22 -10.10
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 16`, and is therefore set to `2^n_features = 16`.
-- Explanation overview --
* Model class: <lm>
* Approach: categorical
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 4
* Number of observations to explain: 3
-- Main computation started --
i Using 16 of 16 coalitions.
Output
explain_id none Month_factor Ozone_sub30_factor Solar.R_factor Wind_factor
<int> <num> <num> <num> <num> <num>
1: 1 42.44 -5.448 11.31 -11.445 5.078
2: 2 42.44 -7.493 -12.27 19.672 -14.744
3: 3 42.44 13.656 -19.73 4.369 -16.659
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 16`, and is therefore set to `2^n_features = 16`.
-- Explanation overview --
* Model class: <lm>
* Approach: independence
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 4
* Number of observations to explain: 3
-- Main computation started --
i Using 16 of 16 coalitions.
Output
explain_id none Month_factor Ozone_sub30_factor Solar.R_factor Wind_factor
<int> <num> <num> <num> <num> <num>
1: 1 42.44 -5.252 13.95 -7.041 -2.167
2: 2 42.44 -5.252 -15.61 20.086 -14.050
3: 3 42.44 4.833 -15.61 0.596 -8.178
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_groups = 16`, and is therefore set to `2^n_groups = 16`.
-- Explanation overview --
* Model class: <lm>
* Approach: timeseries
* Iterative estimation: FALSE
* Number of group-wise Shapley values: 4
* Number of observations to explain: 2
-- Main computation started --
i Using 16 of 16 coalitions.
Output
explain_id none S1 S2 S3 S4
<int> <num> <num> <num> <num> <num>
1: 1 4.895 -0.5261 0.7831 -0.21023 -0.3885
2: 2 4.895 -0.6310 1.6288 -0.04498 -2.9297
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* Approach: gaussian, empirical, ctree, and independence
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Month Day
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -8.987 9.070 15.511 -2.5647 -0.4281
2: 2 42.44 2.916 -4.516 -7.845 -4.1649 -0.2686
3: 3 42.44 6.968 -22.988 -1.717 0.6776 -0.5085
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* Approach: ctree, copula, independence, and copula
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Month Day
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -9.394 9.435 17.0084 -1.700 -2.7465
2: 2 42.44 5.227 -5.209 -8.5226 -2.968 -2.4068
3: 3 42.44 6.186 -22.904 -0.3273 -1.132 0.6081
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* Approach: independence, empirical, gaussian, and empirical
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Month Day
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -6.887 10.715 12.199 -3.670 0.24393
2: 2 42.44 2.603 -2.648 -8.464 -5.405 0.03415
3: 3 42.44 5.868 -22.184 3.401 -2.955 -1.69888
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* Approach: independence
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Day Month_factor
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -4.730 7.750 17.753 -2.601 -7.588
2: 2 42.44 2.338 -3.147 -5.310 -1.676 -7.588
3: 3 42.44 3.857 -17.469 -1.466 1.099 3.379
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* Approach: ctree
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Day Month_factor
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -9.150 12.057 13.162 -0.8269 -4.658
2: 2 42.44 4.425 -6.006 -6.260 -0.3910 -7.151
3: 3 42.44 6.941 -21.427 -7.518 1.3987 10.006
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* Approach: vaeac
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Day Month_factor
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.4 -5.05 6.86 15.7301 -0.208 -6.75
2: 2 42.4 2.60 -4.64 -2.2641 -3.129 -7.95
3: 3 42.4 5.14 -17.88 -0.0137 0.585 1.57
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* Approach: ctree, independence, ctree, and independence
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Day Month_factor
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -7.677 10.757 16.247 -1.446 -7.297
2: 2 42.44 5.049 -5.028 -6.965 -1.265 -7.174
3: 3 42.44 5.895 -20.744 -4.468 0.775 7.943
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* Approach: independence
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Month Day
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -4.537 8.269 17.517 -5.581 -3.066
2: 2 42.44 2.250 -3.345 -5.232 -5.581 -1.971
3: 3 42.44 3.708 -18.610 -1.440 -2.541 1.316
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i You passed a model to `shapr::explain()` which is not natively supported, and did not supply a `get_model_specs` function to `shapr::explain()`.
Consistency checks between model and data is therefore disabled.
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <xgb.Booster>
* Approach: ctree
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Day Month_factor
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -5.639 13.31 20.93 -0.4716 -0.425
2: 2 42.44 5.709 -13.30 -16.52 1.4006 -2.738
3: 3 42.44 6.319 -14.07 -19.77 1.0831 5.870
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 4`, and is therefore set to `2^n_features = 4`.
-- Explanation overview --
* Model class: <lm>
* Approach: independence
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 2
* Number of observations to explain: 3
-- Main computation started --
i Using 4 of 4 coalitions.
Output
explain_id none Solar.R Wind
<int> <num> <num> <num>
1: 1 42.44 -13.818 10.579
2: 2 42.44 4.642 -6.287
3: 3 42.44 4.452 -34.602
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* Approach: ctree
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Month Day
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -9.198 9.679 16.925 -1.3310 -3.473
2: 2 42.44 5.283 -6.046 -8.095 -2.7998 -2.222
3: 3 42.44 6.984 -20.837 -4.762 -0.1545 1.201
Code
print({
out <- code
}, digits = digits)
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
-- Explanation overview --
* Model class: <lm>
* Approach: empirical
* Iterative estimation: FALSE
* Number of feature-wise Shapley values: 5
* Number of observations to explain: 3
-- Main computation started --
i Using 32 of 32 coalitions.
Output
explain_id none Solar.R Wind Temp Month Day
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -13.252 15.541 12.826 -5.77179 3.259
2: 2 42.44 2.758 -3.325 -7.992 -7.12800 1.808
3: 3 42.44 6.805 -22.126 3.730 -0.09234 -5.885
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.