Code
explain(testing = TRUE, model = model_lm_numeric, x_explain = x_explain_numeric,
x_train = x_train_numeric, approach = "independence", phi0 = p0, seed = 1,
extra_computation_args = list(paired_shap_sampling = FALSE,
semi_deterministic_sampling = TRUE))
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 32`, and is therefore set to `2^n_features = 32`.
Condition
Error in `check_and_set_sampling_info()`:
! `paired_shap_sampling` cannot be FALSE when `semi_deterministic_sampling` is TRUE.
Code
explain_forecast(testing = TRUE, model = model_ar_temp, y = data_arima[, "Temp"],
train_idx = 2:151, explain_idx = 152:153, explain_y_lags = 2, horizon = 3,
approach = "empirical", phi0 = p0_ar, seed = 1, group_lags = FALSE,
extra_computation_args = list(paired_shap_sampling = TRUE,
semi_deterministic_sampling = TRUE))
Message
-- Starting `shapr::explain_forecast()` ----------------------------------------
i Feature names extracted from the model contains `NA`.
Consistency checks between model and data is therefore disabled.
i `max_n_coalitions` is `NULL` or larger than or `2^n_features = 4`, and is therefore set to `2^n_features = 4`.
Condition
Error in `check_and_set_sampling_info()`:
! `semi_deterministic_sampling` is not suppored for explain_forecast().
Code
explain(testing = TRUE, model = model_lm_numeric, x_explain = x_explain_numeric,
x_train = x_train_numeric, approach = "gaussian", phi0 = p0, seed = 1,
asymmetric = TRUE, causal_ordering = list(1:2, 3, 4:5), confounding = NULL,
extra_computation_args = list(paired_shap_sampling = TRUE,
semi_deterministic_sampling = TRUE))
Message
-- Starting `shapr::explain()` -------------------------------------------------
i `max_n_coalitions` is `NULL` or larger than or number of coalitions respecting the causal ordering 8, and is therefore set to 8.
Condition
Error in `set_extra_comp_params()`:
! Set `paired_shap_sampling = FALSE` to compute asymmetric Shapley values. Asymmetric Shapley values do not support paired sampling as the paired coalitions will not necessarily respect the causal ordering.
Code
print({
out <- code
}, digits = digits)
Output
explain_id none Solar.R Wind Temp Month Day
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -3.389 7.949 14.864 -4.626 -2.196
2: 2 42.44 3.083 -3.561 -4.635 -6.028 -2.738
3: 3 42.44 3.732 -18.903 -1.043 -3.556 2.202
Code
print({
out <- code
}, digits = digits)
Output
explain_id none Solar.R Wind Temp Month Day
<int> <num> <num> <num> <num> <num> <num>
1: 1 42.44 -4.331 7.521 17.475 -5.006 -3.057
2: 2 42.44 2.873 -4.405 -4.707 -4.967 -2.673
3: 3 42.44 3.354 -18.354 -1.828 -2.822 2.082
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.