setup_approach | R Documentation |
The different choices of approach
take different (optional) parameters,
which are forwarded from explain()
.
See the general usage vignette
for more information about the different approaches.
setup_approach(internal, ...)
## S3 method for class 'combined'
setup_approach(internal, ...)
## S3 method for class 'categorical'
setup_approach(
internal,
categorical.joint_prob_dt = NULL,
categorical.epsilon = 0.001,
...
)
## S3 method for class 'copula'
setup_approach(internal, ...)
## S3 method for class 'ctree'
setup_approach(
internal,
ctree.mincriterion = 0.95,
ctree.minsplit = 20,
ctree.minbucket = 7,
ctree.sample = TRUE,
...
)
## S3 method for class 'empirical'
setup_approach(
internal,
empirical.type = "fixed_sigma",
empirical.eta = 0.95,
empirical.fixed_sigma = 0.1,
empirical.n_samples_aicc = 1000,
empirical.eval_max_aicc = 20,
empirical.start_aicc = 0.1,
empirical.cov_mat = NULL,
model = NULL,
predict_model = NULL,
...
)
## S3 method for class 'gaussian'
setup_approach(internal, gaussian.mu = NULL, gaussian.cov_mat = NULL, ...)
## S3 method for class 'independence'
setup_approach(internal, ...)
## S3 method for class 'regression_separate'
setup_approach(
internal,
regression.model = parsnip::linear_reg(),
regression.tune_values = NULL,
regression.vfold_cv_para = NULL,
regression.recipe_func = NULL,
...
)
## S3 method for class 'regression_surrogate'
setup_approach(
internal,
regression.model = parsnip::linear_reg(),
regression.tune_values = NULL,
regression.vfold_cv_para = NULL,
regression.recipe_func = NULL,
regression.surrogate_n_comb =
internal$iter_list[[length(internal$iter_list)]]$n_coalitions - 2,
...
)
## S3 method for class 'timeseries'
setup_approach(
internal,
timeseries.fixed_sigma = 2,
timeseries.bounds = c(NULL, NULL),
...
)
## S3 method for class 'vaeac'
setup_approach(
internal,
vaeac.depth = 3,
vaeac.width = 32,
vaeac.latent_dim = 8,
vaeac.activation_function = torch::nn_relu,
vaeac.lr = 0.001,
vaeac.n_vaeacs_initialize = 4,
vaeac.epochs = 100,
vaeac.extra_parameters = list(),
...
)
internal |
List.
Not used directly, but passed through from |
... |
Arguments passed to specific classes. See below |
categorical.joint_prob_dt |
Data.table. (Optional)
Containing the joint probability distribution for each combination of feature
values.
|
categorical.epsilon |
Numeric value. (Optional)
If |
ctree.mincriterion |
Numeric scalar or vector.
Either a scalar or vector of length equal to the number of features in the model.
The value is equal to 1 - |
ctree.minsplit |
Numeric scalar. Determines minimum value that the sum of the left and right daughter nodes required for a split. The default value is 20. |
ctree.minbucket |
Numeric scalar. Determines the minimum sum of weights in a terminal node required for a split The default value is 7. |
ctree.sample |
Boolean.
If |
empirical.type |
Character. (default = |
empirical.eta |
Numeric scalar.
Needs to be |
empirical.fixed_sigma |
Positive numeric scalar.
The default value is 0.1.
Represents the kernel bandwidth in the distance computation used when conditioning on all different coalitions.
Only used when |
empirical.n_samples_aicc |
Positive integer.
Number of samples to consider in AICc optimization.
The default value is 1000.
Only used for |
empirical.eval_max_aicc |
Positive integer.
Maximum number of iterations when optimizing the AICc.
The default value is 20.
Only used for |
empirical.start_aicc |
Numeric.
Start value of the |
empirical.cov_mat |
Numeric matrix. (Optional)
The covariance matrix of the data generating distribution used to define the Mahalanobis distance.
|
model |
Objects.
The model object that ought to be explained.
See the documentation of |
predict_model |
Function.
The prediction function used when |
gaussian.mu |
Numeric vector. (Optional)
Containing the mean of the data generating distribution.
|
gaussian.cov_mat |
Numeric matrix. (Optional)
Containing the covariance matrix of the data generating distribution.
|
regression.model |
A |
regression.tune_values |
Either |
regression.vfold_cv_para |
Either |
regression.recipe_func |
Either |
regression.surrogate_n_comb |
Positive integer. Specifies the number of unique coalitions to apply to each training observation. The default is the number of sampled coalitions in the present iteration. Any integer between 1 and the default is allowed. Larger values requires more memory, but may improve the surrogate model. If the user sets a value lower than the maximum, we sample this amount of unique coalitions separately for each training observations. That is, on average, all coalitions should be equally trained. |
timeseries.fixed_sigma |
Positive numeric scalar. Represents the kernel bandwidth in the distance computation. The default value is 2. |
timeseries.bounds |
Numeric vector of length two.
Specifies the lower and upper bounds of the timeseries.
The default is |
vaeac.depth |
Positive integer (default is |
vaeac.width |
Positive integer (default is |
vaeac.latent_dim |
Positive integer (default is |
vaeac.activation_function |
An |
vaeac.lr |
Positive numeric (default is |
vaeac.n_vaeacs_initialize |
Positive integer (default is |
vaeac.epochs |
Positive integer (default is |
vaeac.extra_parameters |
Named list with extra parameters to the |
Martin Jullum
Lars Henry Berge Olsen
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.