knitr::opts_chunk$set(echo = TRUE)
| Title of graph | $X$ | $Y(0)$ | $\tau$ | |----------------------------|----------------------------|-------------|--------| | Y:Linear, ITE:Linear | Linear | Linear | Linear | | Y:Linear, ITE:Sin | Linear | Linear | Sin | | Y:Linear, ITE:Square | Linear | Linear | Square | | Y:Linear, ITE:Square, p=10 | Linear, with 10 covariates | Linear | Square | | Y:Sundin, ITE: Linear | Linear | Sundin | Linear | | Y:Sundin, ITE:Square | Linear | Sundin | Square | | Y:Zaidi Higher, ITE: Athey | Zaidi Higher | Zaidi Lower | Athey | | Y:Zaidi Lower, ITE: Athey | Zaidi Lower | Zaidi Lower | Athey | | Y:Lu, ITE: Lu | Lu | Lu | Lu |
knitr::include_graphics("./per_dgp_results.pdf")
| Response Surface | ESS of B-EMCMITE (in \%) | |:----------------:|:------------------------:| | $D G P 3$ | 54.8 | | $D G P 2$ | 58.0 | | $D G P 4$ | 61.6 | | $D G P 7$ | 63.7 | | $D G P 1$ | 63.9 | | $D G P 8$ | 64.4 | | $D G P 6$ | 67.5 | | $D G P 5$ | 72.8 | | $D G P 10$ | 74.4 | | $D G P 9$ | 77.2 |
# Set up python set.seed(123) library(emcite) use_python("/opt/anaconda3/bin/python") N <- 1000 n1 <- 200 n2 <- 25 td <- dgp(list("N"=N,"p"=4, "covariate"="linear", "y_mean"="linear", "ite"="linear", "real"=F)) s.td <- split_data(td, n1=n1) m1 <- train_model(s.td[["experimentation"]]) tau.train.preds <- predict_ite(s.td[["experimentation"]], m1) tau.test.preds <- predict_ite(s.td[["rollout"]], m1) thetas <- fit_gradient_descent(X=s.td[["experimentation"]][["X"]], tau_predictions=tau.train.preds$tau, weight_types = 5) selections <- sapply(c("random", "variance", "type-s", "emcite"), function(x) af( s.td, tau_train = tau.train.preds$tau, tau_test = tau.test.preds$tau, theta = thetas, n2 = n2, type = x, weight_types = 5, parallel = F,R=F ), simplify = F, USE.NAMES = T)
# With assignment function "turned on" results <- sapply(selections, function(x) retrain_and_metrics( sampling_data( s.td, x, active = T, train_predictions = tau.train.preds, test_predictions = tau.test.preds ) ), simplify = F, USE.NAMES = T) res <- rbindlist(results) res[, selection:=names(selections)]
print(res)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.