## calculate_scores.R
## This script calculates OHI scores with the `ohicore` package.
## - configure_toolbox.r ensures your files are properly configured for `ohicore`.
## - The `ohicore` function CalculateAll() calculates OHI scores.
## run the configure_toolbox.r script to check configuration
setwd("~/github/<%=key%>/<%=scenario%>")
source('configure_toolbox.r')
## calculate scenario scores
scores = ohicore::CalculateAll(conf, layers)
## save scores as scores.csv
write.csv(scores, 'scores.csv', na='', row.names=FALSE)
## visualize scores ----
## source from ohibc until added to ohicore, see https://github.com/OHI-Science/ohibc/blob/master/regionHoweSound/ohibc_howesound_2016.Rmd
source('https://raw.githubusercontent.com/OHI-Science/ohibc/master/src/R/common.R')
source('plot_flower_local.R')
## regions info
regions <- bind_rows(
data_frame( # order regions to start with whole study_area
region_id = 0,
region_name = '<%=study_area%>'),
read_csv('spatial/regions_list.csv') %>%
select(region_id = rgn_id,
region_name = rgn_name))
## set figure name
regions <- regions %>%
mutate(flower_png = sprintf('reports/figures/flower_%s.png',
str_replace_all(region_name, ' ', '_')))
readr::write_csv(regions, 'reports/figures/regions_figs.csv')
## save flower plot for each region
for (i in regions$region_id) { # i = 0
## fig_name to save
fig_name <- regions$flower_png[regions$region_id == i]
## scores info
score_df <- scores %>%
filter(dimension == 'score') %>%
filter(region_id == i)
## flower plot
plot_obj <- plot_flower(score_df,
filename = fig_name,
goals_csv = 'conf/goals.csv',
incl_legend = TRUE)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.