data_example | R Documentation |
A simulated dataset for 10,000 independent variables (e.g. SNPs) consisting of regression coefficients on incidence and prognosis, with their standard errors. Among all the SNPs, 5% (500 variables) have effects on incidence only, 5% (500 variables) on prognosis only, and 5% have correlated effects on both with a correlation coeficient of '-0.5'. The estimates are obtained from linear regression in a simulated dataset of 20,000 individuals.
data_example
A data frame with 10,000 rows and 5 variables:
Regression coefficient on incidence
Standard error of xbeta
Regression coefficient on prognosis
Standard error of ybeta
P-value of the association with prognosis
# Load the \code{SlopeHunter} package require(SlopeHunter) # Load the input data set data(data_example, package = "SlopeHunter") head(data_example) # Implement the Slope-Hunter method Sh.Model <- hunt(dat = data_example, xbeta_col="xbeta", xse_col="xse", ybeta_col="ybeta", yse_col="yse", yp_col="yp", xp_thresh = 0.001, Bootstrapping = TRUE, show_adjustments = TRUE, seed=2021) # [1] "Estimated slope: -0.274120383700514" # [1] "SE of the slope: 0.0229566376478153" # [1] "95% CI: -0.319115393490232, -0.229125373910796" # Display the estimated slope (adjustment factor) Sh.Model$b # [1] -0.2741204 # Extract information about cluster memberships of SNPs included in the analysis Adj <- Sh.Model$Fit # Show the first 6 values of the unadjusted estimated effects on prognosis head(data_example$ybeta) # [1] -0.0092889266 0.0005575032 0.0112203795 -0.0095533069 0.0082635203 0.0026550045 # Show results of the first 6 corrected variants: head(Sh.Model$est) # xbeta xse ybeta yse yp xp SNP ybeta_adj yse_adj yp_adj # 1 -0.007 0.007 -0.009 0.006 0.136 0.300 snp1 -0.011 0.006 0.083 # 2 0.014 0.007 0.000 0.006 0.928 0.042 snp2 0.004 0.006 0.492 # 3 -0.011 0.007 0.011 0.006 0.072 0.097 snp3 0.008 0.006 0.220 # 4 0.004 0.007 -0.009 0.006 0.125 0.493 snp4 -0.008 0.006 0.208 # 5 -0.025 0.007 0.008 0.006 0.185 0.000 snp5 0.001 0.006 0.851 # 6 0.013 0.007 0.002 0.006 0.670 0.054 snp6 0.006 0.006 0.329 # Generate an interactive plot for the estimated clusters (hover on the data points to view info) require(ggplot2) require(plotly) ggplotly(Sh.Model$plot)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.