View source: R/bcdissimilarity.R
bcdissimilarity | R Documentation |
Calculate Bray-Curtis Dissimilarity for samples within and between groups.
bcdissimilarity(relab_mat, met, sample_id, var)
relab_mat |
data.frame or matrix. relative abundance table with samples in columns and features in rows; feature IDs as rownames |
met |
dataframe. metadata table |
sample_id |
string. Sample identifier (column name in |
var |
string. Metadata variable (column name in |
list.
bc_df
is long dataframe of samples being compared and corresponding distances.
bc_dist
matrix of bray curtis distances
data(dss_example)
count_table <- dss_example$merged_abundance_id %>% column_to_rownames('featureID')
relab_table <- relab(count_table)
met_table <- dss_example$metadata
# bray curtis for one metadata variable
bc_result <- bcdissimilarity(relab_table, met_table, 'sampleID','Phenotype')
pdata <- bc_result$bc_df
p_phen <- ggplot(pdata, aes(x=value, y=dist)) +
geom_violin() +
theme_bw(14) +
ylab('Bray-Curtis Dissimilarity') +
xlab('Phenotype')
for multiple metadata variables
bc_data <- c()
for(var in c('Phenotype','Genotype')) {
bc_result <- bcdissimilarity(relab_table, met_table, 'sampleID', var)
bc_data <- rbind(bc_data, bc_result$bc_df)
}
p_bc <- ggplot(bc_data, aes(x=comparison, y=dist)) +
geom_violin() +
theme_bw(14) +
facet_wrap(~met_var) +
ylab('Bray-Curtis Dissimilarity') +
theme(axis.title.x=element_blank())
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.