View source: R/gd_compute_pip_stats_lq.R
derive_lq | R Documentation |
derive_lq()
returns the first derivative of the quadratic Lorenz curves
with c = 1. General quadratic form: ax^2 + bxy + cy^2 + dx + ey + f = 0. This
function implements computes the derivative of equation (6b) in the original
Lorenz Quadratic paper:
-(B / 2) - (\beta + 2 \alpha x) / (4
\sqrt(\alpha x^2 + \beta x + e^2)
derive_lq(x, A, B, C, key_values)
x |
numeric: Point on curve. Allow for vectors. |
A |
numeric: Lorenz curve coefficient. Output of
|
B |
numeric: Lorenz curve coefficient. Output of
|
C |
numeric: Lorenz curve coefficient. Output of
|
key_values |
named list: key values for lq fit, calculated using A, B, C parameters using gd_lq_key_values |
numeric
Villasenor, J., B. C. Arnold. 1989. "Elliptical Lorenz curves". Journal of Econometrics 40 (2): 327-338.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.