| train.randomForest | R Documentation |
Provides a wrapping function for the randomForest.
train.randomForest(formula, data, ..., subset, na.action = na.fail)
formula |
a formula describing the model to be fitted (for the print method, an randomForest object). |
data |
an optional data frame containing the variables in the model. By default the variables are taken from the environment which randomForest is called from. |
... |
optional parameters to be passed to the low level function randomForest.default. |
subset |
an index vector indicating which rows should be used. (NOTE: If given, this argument must be named.) |
na.action |
A function to specify the action to be taken if NAs are found. (NOTE: If given, this argument must be named.) |
A object randomForest.prmdt with additional information to the model that allows to homogenize the results.
the parameter information was taken from the original function randomForest.
The internal function is from package randomForest.
# Classification
data("iris")
n <- seq_len(nrow(iris))
.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]
data.test <- iris[-.sample,]
modelo.rf <- train.randomForest(Species~., data.train)
modelo.rf
prob <- predict(modelo.rf, data.test, type = "prob")
prob
prediccion <- predict(modelo.rf, data.test, type = "class")
prediccion
# Regression
len <- nrow(swiss)
sampl <- sample(x = 1:len,size = len*0.20,replace = FALSE)
ttesting <- swiss[sampl,]
ttraining <- swiss[-sampl,]
model.rf <- train.randomForest(Infant.Mortality~.,ttraining)
prediction <- predict(model.rf, ttesting)
prediction
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.