RDINA | R Documentation |
Estimation of the restricted deterministic input, noisy "and" gate model (R-DINA; Nájera et al., 2023). In addition to the non-compensatory (i.e., conjunctive) condensation rule of the DINA model, the compensatory (i.e., disjunctive) rule of the DINO model can be also applied (i.e., R-DINO model). The R-DINA/R-DINO model should be only considered for applications involving very small sample sizes (N < 100; Nájera et al., 2023), and model fit evaluation and comparison with competing models (e.g., DINA/DINO, G-DINA) is highly recommended.
RDINA(
dat,
Q,
gate = "AND",
att.prior = NULL,
est = "Brent",
tau.alpha = "MAP",
emp.bayes = FALSE,
boot = FALSE,
n.boots = 500,
n.cores = 1,
maxitr = 1000,
conv.crit = 1e-04,
init.phi = 0.2,
bound.p = 1e-06,
verbose = TRUE,
seed = NULL
)
dat |
A N individuals x J items ( |
Q |
A J items x K attributes Q-matrix ( |
gate |
Either a conjunctive ( |
att.prior |
A 2^K attributes vector containing the prior distribution for each latent class. The sum of all elements does not have to be equal to 1, since the vector will be normalized. Default is |
est |
Use the Brent's method ( |
tau.alpha |
Attribute profile estimator (either |
emp.bayes |
Use empirical Bayes estimation for structural parameters. Default is |
boot |
Use bootstrapping to increase robustness in posterior probabilities estimation. Default is |
n.boots |
Number of bootstrapping samples. Default is 500. |
n.cores |
Number of CPU processors to speed up computation when bootstrapping is used. Default is 1. |
maxitr |
Maximum number of iterations. Default is 1000. |
conv.crit |
Convergence criterion regarding the maximum absolute change in either the phi parameter estimate or the marginal posterior probabilities of attribute mastery. Default is 0.0001. |
init.phi |
Initial value for the phi parameter. Default is 0.2. |
bound.p |
Lowest value for probability estimates (highest would be 1 - bound.p). Default is 1e-06. |
verbose |
Print information after each iteration. Default is |
seed |
Random number generation seed (e.g., to solve ties in case they occur with MLE or MAP estimation). Default is |
RDINA
returns an object of class RDINA
.
MLE
Estimated attribute profiles with the MLE estimator (matrix
).
MAP
Estimated attribute profiles with the MAP estimator (matrix
).
EAP
Estimated attribute profiles with the EAP estimator (matrix
).
phi
Phi parameter estimate (numeric
).
post.probs
A (list
) containing the estimates of the posterior probability of each examinee in each latent class (pp
), marginal posterior probabilities of attribute mastery (mp
), and posterior probability of each latent class (lp
).
likelihood
A (list
) containing the likelihood of each examinee in each latent class (lik_il
) and the model log-likelihood (logLik
).
test.fit
Relative model fit indices (list
).
class.accu
A (list
) containing the classification accuracy estimates at the test-level (tau
), latent class-level (tau_l
), and attribute-level (tau_k
).
specifications
Function call specifications (list
).
Pablo Nájera, Universidad Pontificia Comillas
Ma, W., & de la Torre, J. (2020). GDINA: An R package for cognitive diagnosis modeling. Journal of Statistical Software, 93(14). https://doi.org/10.18637/jss.v093.i14
Nájera, P., Abad, F. J., Chiu, C.-Y., & Sorrel, M. A. (2023). The Restricted DINA model: A Comprehensive Cognitive Diagnostic Model for Classroom-Level Assessments. Journal of Educational and Behavioral Statistics.
library(GDINA)
Q <- sim30GDINA$simQ # Q-matrix
K <- ncol(Q)
J <- nrow(Q)
set.seed(123)
GS <- data.frame(guessing = rep(0.2, J), slip = rep(0.2, J))
sim <- simGDINA(20, Q, GS, model = "DINA")
simdat <- sim$dat # Simulated data
simatt <- sim$attribute # Generating attributes
fit.RDINA <- RDINA(simdat, Q) # Apply the GNPC method
ClassRate(fit.RDINA$EAP, simatt) # Check classification accuracy
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.