knitr::opts_chunk$set(echo = TRUE) # PAQUETES #require(xtable) library(sf) #library(raster) library(dplyr) library(spData) library(spDataLarge) library(tmap) # for static and interactive maps library(leaflet) # for interactive maps library(mapview) # for interactive maps library(ggplot2) # tidyverse vis package #library(shiny) # for web applications library(sp) # distancia costa library(rgeos) # distancia costa library(dplyr) # manejos de datos #library(nnet) # red neuronal library(shape) # mapa_vms library(lubridate) # manejo de fechas #library(ineq) library(DT) # reporte library(maps) # mapa library(mapdata) # mapa library(rgdal) # sh map peru library(data.table) # formato tm #source("funciones.R") #load("C:/Users/fenix/Documents/sisesat/output.RData") datos_vms$Name_Vessel <- datos_vms$Name_vessel index1 <- indicadores1(data = datos_vms) index2 <- indicadores2(data = datos_vms) #index_totales <- merge(index1, index2, by = "fecha") # cargamos el shapefile de peru # generamos los puntos de pesca en formato tm datos_plot <- datos_vms[!is.na(datos_vms$Lon_calas), c("Name_Vessel", "Date", "Lon_calas", "Lat_calas", "dist_costa")] datos_plot$fecha <- format(datos_plot$Date, format = "%Y-%m-%d") datos_plot$lance <- 1 datos_plot$Name_Vessel <- paste0(datos_plot$Name_Vessel, " ",datos_plot$Date," (", ... = round(datos_plot$Lon_calas,3),";", round(datos_plot$Lat_calas,3),")") datos_plot <- datos_plot[, c("Name_Vessel", "fecha", "lance","Lon_calas", "Lat_calas", "dist_costa")] DT <- data.table(datos_plot) DT_sf = st_as_sf(DT, coords = c("Lon_calas", "Lat_calas"), crs = 4326, agr = "constant") # generamos el mapa en formato tm map_per = tm_shape(shape) + tm_borders(col = "gray", lwd = 3) + tm_shape(DT_sf) + tm_bubbles("lance", col = "grey30", scale=.05) # generamos segundo mapa areas iso # area <- area_isoparalitoral(dist_costa = datos_plot$dist_costa, latitude = datos_plot$Lat) # area_iso <- area$area[!is.na(area$area)] # datos_plot <- datos_plot[!is.na(area$area),] # centro_areaIso <- centroidAssigner(code = area_iso, what = "isoparalitoral") # datos_plot$areaIso <- centro_areaIso$code # datos_plot$Lon_areaIso <- centro_areaIso$lon # datos_plot$Lat_areaIso <- centro_areaIso$lat # areaIso_lonlat <- lapply(split(datos_plot, datos_plot$areaIso, drop = TRUE),function(x){ # areaIso <- x$areaIso # lon <- x$Lon_areaIso # lat <- x$Lat_areaIso # num_lances <- length(x$areaIso) # # cbind.data.frame(areaIso, lon, lat, num_lances) # }) # areaIso_lonlat <- areaIso_lonlat %>% lapply(data.frame) %>% bind_rows() # DT2 <- data.table(areaIso_lonlat) # DT_sf2 = st_as_sf(DT2, coords = c("lon", "lat"), # crs = 4326, agr = "constant") #map_per2 = tm_shape(shape) + #tm_borders(col = "gray", lwd = 2) + #tm_shape(DT_sf2) + #tm_symbols(size = "num_lances", title.col="Numero de lances", col="num_lances", #shape="num_lances" #legend.format = list(text.align="right", text.to.columns = TRUE)) + #tm_legend(outside = TRUE, outside.position = "bottom", stack = "horizontal")
datatable(index1, extensions = 'Buttons', options = list( dom = 'Bfrtip', buttons = c('copy', 'csv', 'excel', 'pdf', 'print') ) )%>% formatStyle('n_lances', fontWeight = styleInterval(3, c('normal', 'bold'))) %>% formatStyle( 'dur', color = styleInterval(24, c('black', 'black')), backgroundColor = styleInterval(24, c('gray', 'yellow')) ) %>% formatStyle( 'rec_mean',fontWeight = styleInterval(200, c('normal', 'bold')))
datatable(index2, extensions = 'Buttons', options = list( dom = 'Bfrtip', buttons = c('copy', 'csv', 'excel', 'pdf', 'print') ) )%>% formatStyle('dc_mean', fontWeight = styleInterval(30, c('normal', 'bold'))) %>% formatStyle( 'area', color = styleInterval(1000, c('black', 'black')), backgroundColor = styleInterval(1000, c('gray', 'yellow')) )
tmap_mode("view") map_per
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.