Description Usage Arguments Value Examples
View source: R/crane.bipartite.R
Pertrubs the bipartite network with fixed node strength
1 | crane.bipartite(df, alpha = 0.1, beta = 0, getAdj = F, randomStart = F)
|
df |
Adjacency Matrix or Edge list |
alpha |
alpha paramter perturbs each edge weights |
beta |
beta parameter perturbs the strength of each node. Set this to 0 if you want nodes to have node strength identical to the orignal network. |
getAdj |
TRUE = this will return adjacency matrix instead of edge list |
randomStart |
FALSE = initialize the first row with completely random edge weights. |
edge list
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ## Not run:
# Using Edge list as input
elist=crane.bipartite(nonAng)
elist=crane.bipartite(nonAng,alpha=0.3)
# Using Edge list as input and Adjcency Matrix as output
adjMatrix=crane.bipartite(nonAng,alpha=0.1,getAdj=T)
# Using Edge list as input and Adjcency Matrix as output
A=elistToAdjMat(nonAng)
elist=crane.bipartite(A)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.