library(knitr)
opts_chunk$set(echo = TRUE, cache = TRUE, message = FALSE, 
               out.width = '100%')
root <- rprojroot::find_rstudio_root_file()

Load ENMeval results

library(Carex.bipolar)
library(ENMeval)
species <- "canescens"
load(paste0(root, "/analyses/output/fullspp_ENMeval/", species, "_modeval.rda"))
#modeval

Define best model for each species

After examining output of ENMeval for each species.

if (species == "allspp") bestmodel <- "LQH_1.5"
if (species == "canescens") bestmodel <- "LQH_2"
if (species == "macloviana") bestmodel <- "LQ_1.5"
if (species == "magellanica") bestmodel <- "LQ_1"
if (species == "maritima") bestmodel <- "LQ_1.5"
if (species == "microglochin") bestmodel <- "LQ_1"

Select best Maxent model

maxmod <- modeval@models[[which(modeval@results$settings == bestmodel)]]

Response curves

response(maxmod)

Plot present suitability

Load occurrence data

locs <- as.data.frame(readr::read_csv(file.path(root, "data/locs_30m.csv")))
## Select only occurrences of this species (defined in makefile):
if (species != "allspp") locs <- locs[locs$species == species, ]

Load present bioclim rasters

bioclim.pres <- read_presclim()

Calculate predictions for present

## Raw Maxent values
pres.pred.raw <- modeval@predictions[[bestmodel]]
plot(pres.pred.raw, main = "Raw model predictions")

## Logistic predictions
pres.pred <- predict(maxmod, bioclim.pres, args = c("outputformat=logistic"))
# Plot
plot(pres.pred)
points(locs$longitude, locs$latitude, col = "black", pch = 20, cex = 0.5)
# Save
writeRaster(pres.pred, filename = paste0(root, "/analyses/output/fullspp_predictions/", species, "/", species, "_proj_pres.grd"),
            overwrite = TRUE)

Project2future

RCP 4.5

pred.rcp45 <- combine_pred(maxmod, "rcp45")
plot(pred.rcp45)
writeRaster(pred.rcp45, filename = paste0(root, "/analyses/output/fullspp_predictions/", species, "/", species, "_proj_rcp45.grd"),
            overwrite = TRUE)

RCP 8.5

pred.rcp85 <- combine_pred(maxmod, "rcp85")
plot(pred.rcp85)
writeRaster(pred.rcp85, filename = paste0(root, "/analyses/output/fullspp_predictions/", species, "/", species, "_proj_rcp85.grd"),
            overwrite = TRUE)
devtools::session_info()


Pakillo/Carex.bipolar documentation built on July 27, 2020, 2:09 p.m.