knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
The irregularly-spaced data are interpolated onto regular latitude-longitude grids by weighting each station according to its distance and angle from the center of a search radius.
In addition to this, we also provide a simple way (Jones and Hulme, 1996) to grid the irregularly-spaced data points onto regular latitude-longitude grids by averaging all stations in grid-boxes.
Caesar, J., L. Alexander, and R. Vose, 2006: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. Journal of Geophysical Research, 111, https://doi.org/10.1029/2005JD006280.
Jones, P. D., and M. Hulme, 1996: Calculating regional climatic time series for temperature and precipitation: Methods and illustrations. Int. J. Climatol., 16, 361–377, https://doi.org/10.1002/(SICI)1097-0088(199604)16:4<361::AID-JOC533.0.CO;2-F>.
Install the latest CRAN release via command:
install.packages("adw")
library(sf) library(ggplot2) library(adw) library(cnmap) set.seed(1) tavg <- data.frame(lon = runif(100, min = 110, max = 117), lat = runif(100, min = 31, max = 37), value = runif(100, min = 20, max = 35)) hmap <- getMap(name = "河南省", returnClass = "sf") ggplot() + geom_point(data = tavg, aes(x = lon, y = lat, colour = value), pch = 17, size = 2.5) + geom_sf(data = st_cast(hmap, 'MULTILINESTRING')) + scale_colour_fermenter(palette = "YlOrRd", direction = 1, breaks = seq(from = 25, to = 32, by = 1), limits = c(0, 100), name = expression("\u00B0C")) + ggtitle("The irregularly-spaced data") + theme_bw() + theme(axis.title = element_blank(), legend.key.width = unit(0.5,"cm"), legend.key.height = unit(1.5, "cm"), plot.title = element_text(hjust = 0.5, size = 11))
The parameter extent in the adw function is a sf class (sf package), and the coordinate reference system of the object is WGS1984 (EPSG: 4326).
library(adw) hmap_sf <- getMap(name = "河南省", returnClass = "sf") |> st_make_valid() dg <- adw(tavg, extent = hmap_sf, gridsize = 0.1, cdd = 400) head(dg) ggplot() + geom_tile(data = dg, aes(x = lon, y = lat, fill = value)) + geom_sf(data = st_cast(hmap_sf, 'MULTILINESTRING')) + scale_fill_fermenter(palette = "YlOrRd", direction = 1, breaks = seq(from = 25, to = 32, by = 1), limits = c(0, 100), name = expression("\u00B0C"), na.value = "white") + ggtitle("Angular distance weighting interpolation") + theme_bw() + theme(axis.title = element_blank(), legend.key.width = unit(0.5,"cm"), legend.key.height = unit(1.5, "cm"), plot.title = element_text(hjust = 0.5, size = 11))
The parameter extent in the adw function is a SpatVector class (terra packag), and the coordinate reference system of the object is WGS1984 (EPSG: 4326).
library(adw) library(terra) hmap_sv <- getMap(name = "河南省", returnClass = "sv") dg <- adw(tavg, extent = hmap_sv, gridsize = 0.1, cdd = 400) head(dg) ggplot() + geom_tile(data = dg, aes(x = lon, y = lat, fill = value)) + geom_sf(data = st_cast(hmap_sf, 'MULTILINESTRING')) + scale_fill_fermenter(palette = "YlOrRd", direction = 1, breaks = seq(from = 25, to = 32, by = 1), limits = c(0, 100), name = expression("\u00B0C"), na.value = "white") + ggtitle("Angular distance weighting interpolation") + theme_bw() + theme(axis.title = element_blank(), legend.key.width = unit(0.5,"cm"), legend.key.height = unit(1.5, "cm"), plot.title = element_text(hjust = 0.5, size = 11))
The parameter extent in the adw function is a extent vector of length 4 in the order [xmin, xmax, ymin, ymax]
library(adw) interpExtent <- c(110.36, 116.65, 31.38, 36.37) # [xmin, xmax, ymin, ymax] dg <- adw(tavg, extent = interpExtent, gridsize = 0.1, cdd = 400) head(dg) ggplot() + geom_tile(data = dg, aes(x = lon, y = lat, fill = value)) + geom_sf(data = st_cast(hmap_sf, 'MULTILINESTRING')) + scale_fill_fermenter(palette = "YlOrRd", direction = 1, breaks = seq(from = 25, to = 32, by = 1), limits = c(0, 100), name = expression("\u00B0C"), na.value = "white") + ggtitle("Angular distance weighting interpolation") + theme_bw() + theme(axis.title = element_blank(), legend.key.width = unit(0.5,"cm"), legend.key.height = unit(1.5, "cm"), plot.title = element_text(hjust = 0.5, size = 11))
The irregularly-spaced data of points are converted onto regular latitude-longitude grids by averaging all stations in grid-boxes. The parameter extent in the point2grid function is a extent vector of length 4 in the order [xmin, xmax, ymin, ymax], or a simple fearture object, or a SpatVect object.
library(adw) interpExtent <- c(110.36, 116.65, 31.38, 36.37) # [xmin, xmax, ymin, ymax] dg <- points2grid(tavg, extent = interpExtent, gridsize = 0.5) head(dg) ggplot() + geom_tile(data = dg, aes(x = lon, y = lat, fill = value)) + geom_sf(data = st_cast(hmap_sf, 'MULTILINESTRING')) + scale_fill_fermenter(palette = "YlOrRd", direction = 1, breaks = seq(from = 25, to = 32, by = 1), limits = c(0, 100), name = expression("\u00B0C"), na.value = "white") + ggtitle("Averaging all stations in grid-boxes") + theme_bw() + theme(axis.title = element_blank(), legend.key.width = unit(0.5,"cm"), legend.key.height = unit(1.5, "cm"), plot.title = element_text(hjust = 0.5, size = 11))
The large area, or hemispheric, or global averages can be calculated dependent on the area represented by the grid-point or grid-box. The weight of latitude-longitude grid-points-boxes should be the cosine of the latitude of the ith grid-point-box.
dg <- na.omit(dg) awa(dg$value, dg$lat)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.