ESSlme: Effective Sample Size for 'lme' Parameters

Description Usage Arguments Details Value Note Author(s) References See Also Examples

Description

Compute the effective sample sizes associated with the parameter estimates of a linear mixed-effects model fitted via lme.

Usage

1
ESSlme(model, IDcolumn)

Arguments

model

A linear mixed-effects model fit of class lme from nlme.

IDcolumn

An integer giving the number of the column in the data.frame on which the model fit is based that contains the ID variable (cluster identifier).

Details

The data.frame used for model fitting must be sorted along the ID variable, otherwise you might get mock results!

Value

A vector giving the effective sample sizes associated with the estimated parameters of the lme model.

Note

Models with multiple hierarchical levels are currently not supported.

Author(s)

Philip Pallmann pallmann@biostat.uni-hannover.de

References

Faes, C., Molenberghs, G., Aerts, M., Verbeke, G., Kenward, M. G. (2009) The effective sample size and an alternative small-sample degrees-of-freedom method. The American Statistician, 63(4), 389–399.

See Also

ESSgls

Examples

1
2
3
4
5
### Using the example from the lme help page
library(nlme)
data(Orthodont)
lme1 <- lme(distance ~ age + Sex, Orthodont, random=~1)
#ESSlme(model=lme1, IDcolumn=3)

PhilipPallmann/SimLongi documentation built on May 8, 2019, 1:34 a.m.