View source: R/data_processing.R
rm_outlier_df | R Documentation |
The function removes or replaces outliers for every grouping variable (Label) present in a Normalized Rootdetection Data Set. According to outlier definition in box plots the function defines outliers as 1.5 x IQR.
rm_outlier_df(
root_norm,
col_grouping = "Label",
col_value = "LengthMM",
fill_na = F
)
root_norm |
data.frame; normalized Rootdetection data set |
col_grouping |
string; name of the column that should be used as grouping variable (Label) |
col_value |
string; name of the column containing values (dependent variable) (LengthMM) |
fill_na |
logical; If TRUE all outliers present in col_value will be replaced by NA. If FALSE all outliers will be removed. |
data.frame; containing data without outliers or outliers replaced by NA
# normalize Rootdetection Output
root_norm <- norm_10mm_standard(root_output)
# transform outliers to NA
rm_outlier_df(root_norm, fill_na = TRUE)
# remove outliers
rm_outlier_df(root_norm, fill_na = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.