get_cox_stats | R Documentation |
Calculates fit statistics for a CoxPH model: AIC (Akaike
information criterion), BIC (Bayesian information criterion), raw_rsq
(unadjusted R-squared, cod, mer or mev/default, see:
rsq
), MAE (mean absolute error), MSE
(mean squared error), RMSE (root MSE), concordance (C) index
with 95% confidence intervals (normality assumption) and the
integrated Brier score (IBS, see: pec
).
get_cox_stats(
cox_model,
data = NULL,
type.predict = "lp",
type.residuals = "martingale",
rsq_type = c("mev", "mer", "cod"),
...
)
cox_model |
a CoxpPH model or a coxex object. |
data |
the data frame used for the model construction. Ignored, if coxex object provided. |
type.predict |
type of the prediction, 'lp', linear predictor score by
default. See: |
type.residuals |
type of the residuals, 'martingale' by default.
See: |
rsq_type |
type of R-squared statistic, see: |
... |
extra arguments passed to |
a data frame with the statistic values.
Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model. (Springer Verlag, 2000).
Harrell, F. E., Lee, K. L. & Mark, D. B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 15, 361–387 (1996).
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.