| SentenceSimilarity | R Documentation |
Get similar sentences.
Get similar sentences.
getSentenceVectors(method = c("pos", "openNLP"), f = mean, stopwords = tm::stopwords("de"), tfidf = FALSE, verbose = TRUE)partitiona partition
getSentenceVectors()SentenceSimilarity$getSentenceVectors(
method = c("pos", "openNLP"),
f = mean,
stopwords = tm::stopwords("de"),
tfidf = FALSE,
verbose = TRUE
)getSentenceVector()SentenceSimilarity$getSentenceVector(sentence)
getSentenceSimilarity()SentenceSimilarity$getSentenceSimilarity(x, n = NULL, text = TRUE)
getSimilarityMatrix()SentenceSimilarity$getSimilarityMatrix()
getSimilarSentences()SentenceSimilarity$getSimilarSentences(i, n = 10)
clone()The objects of this class are cloneable with this method.
SentenceSimilarity$clone(deep = FALSE)
deepWhether to make a deep clone.
## Not run:
library(R6)
library(NLP)
library(openNLP)
library(openNLPmodels.de)
library(polmineR)
filename <- "/Users/blaette/Lab/tmp/word2vec/word2vec/data/plprbt_word2vec.csv"
W2V <- Word2Vec$new()
W2V$load(filename)
merkel <- partition("PLPRBT", speaker_name = "Angela Merkel", speaker_year = "2015")
S <- SentenceSimilarity$new()
S$partition <- merkel
S$word2vec <- W2V$vector_matrix
S$threads <- 3
S$getSentenceVectors(method = "pos", f = sum)
S$getSimilarityMatrix()
i <- 549
S$sentences[[i]]
sentence <- c("Kriminelle", "Ausländer", "raus", "und", "zwar", "schnell")
S$getSentenceSimilarity(sentence)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.