The autoxgb strategy creates an XGBoost learner to fit a specific task. It performs
imputation if any variables are missing, and one-hot encoding if any factor variables
are present. By default, it uses the following hyperparameters:
nrounds = 200
eta = 2^-6
max_depth = 3
colsample_bytree = 0.6
subsample = 0.6
Available parameters for use in in strategy.pars:
par.vals (list) List of hyperparameter values to override defaults.
impute.pars (list) List of parameters to pass to makeImputeWrapper
dummy.pars (list) List of parameters to pass to makeDummyFeaturesWrapper
The autoxgb_tuned strategy creates an XGBoost learner to fit a specific
task and tunes it for improved performance.
Available parameters for use in in strategy.pars:
impute.pars (list) List of parameters to pass to makeImputeWrapper
dummy.pars (list) List of parameters to pass to makeDummyFeaturesWrapper
tune.pars (list) list of parameters to pass to makeTuneWrapper
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.