msf_dict | R Documentation |
These function produces MSF OCA dictionaries based on DHIS2 (for outbreaks) and Kobo (for surveys) data sets defining the data element name, code, short names, types, and key/value pairs for translating the codes into human-readable format.
msf_dict(
disease,
name = "MSF-outbreak-dict.xlsx",
tibble = TRUE,
compact = TRUE,
long = TRUE
)
msf_dict_survey(
disease,
name = "MSF-survey-dict.xlsx",
tibble = TRUE,
compact = TRUE,
long = TRUE,
template = TRUE
)
disease |
Specify which disease you would like to use.
|
name |
the name of the dictionary stored in the package.
|
tibble |
Return data dictionary as a tidyverse tibble (default is TRUE) |
compact |
if |
long |
If @param template Only used for |
template |
(for survey dictionaries): if |
matchmaker::match_df()
gen_data()
msf_dict_survey()
if (require("dplyr") & require("matchmaker")) {
withAutoprint({
# You will often want to use MSF dictionaries to translate codes to human-
# readable variables. Here, we generate a data set of 20 cases:
dat <- gen_data(
dictionary = "Cholera",
varnames = "data_element_shortname",
numcases = 20,
org = "MSF"
)
print(dat)
# We want the expanded dictionary, so we will select `compact = FALSE`
dict <- msf_dict(disease = "Cholera", long = TRUE, compact = FALSE, tibble = TRUE)
print(dict)
# Now we can use matchmaker to filter the data:
dat_clean <- matchmaker::match_df(dat, dict,
from = "option_code",
to = "option_name",
by = "data_element_shortname",
order = "option_order_in_set"
)
print(dat_clean)
})
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.