Introduction to this template

This is a template which can be used to create a report from a retrospective nutrition survey.

Data analysis: Definitions and standards

We used the following definitions for the analysis of the survey results for Weight for Height z-scores (WHZ):

We used the following definitions for the analysis of the survey results for MUAC measurements:

In order to estimate stunting in the surveyed population, we looked at Height for Age z-scores (HAZ) and used the following definitions:

In order to estimate underweight in the surveyed population, we looked at Weight for Age z-scores (WAZ) and used the following definitions:

Exclusion of z-scores from Observed mean SMART flags included:
WHZ: <-5 or >5;
HAZ: <-6 or >6;
* WAZ: <-6 or >5.

Installing and loading required packages

## hide all code chunks in the output, but show errors
knitr::opts_chunk$set(echo = FALSE, error = TRUE, fig.width = 6*1.25, fig.height = 6)


## set default NA to - in output, define figure width/height
options(knitr.kable.NA = "-")

# Ensures the package "pacman" is installed
if (!require("pacman")) {
     install.packages("pacman") }

# Install and load required packages for this template
pacman::p_load(
  knitr,       # create output docs 
  here,        # find your files
  rio,         # for importing data
  janitor,     # clean/shape data
  dplyr,       # clean/shape data
  tidyr,       # clean/shape data
  forcats,     # manipulate and rearrange factors
  stringr,     # manipulate texts
  ggplot2,     # create plots and charts
  apyramid,    # plotting age pyramids
  sitrep,      # MSF field epi functions
  anthro,      # WHO Child Growth Standards (wrapper of survey)
  survey,      # for survey functions
  srvyr,       # dplyr wrapper for survey package
  gtsummary,   # produce tables
  flextable,   # for styling output tables
  labelled,    # add labels to variables
  matchmaker,  # recode datasets with dictionaries
  parsedate    # guessing dates
  )


## set default text size to 16 for plots
## give classic black/white axes for plots
ggplot2::theme_set(theme_classic(base_size = 18))
## generates MSF standard dictionary for Kobo 
study_data_dict <- msf_dict_survey("Nutrition")
## generates MSF standard dictionary for Kobo in long format (for recoding)
study_data_dict_long <- msf_dict_survey(disease = "Nutrition", compact = FALSE)

## generates a fake dataset for use as an example in this template
## this dataset already has household and individual levels merged
study_data_raw <- gen_data(dictionary = "Nutrition",
                           varnames   = "name",
                           numcases   = 1000)
### Read in data ---------------------------------------------------------------


## Excel file ------------------------------------------------------------------

## read in household data sheet
# study_data_hh <- rio::import(here::here("nutrition_survey.xlsx"), 
#                               which = "nutrition_survey_erb", na = "")

## read in individual level data sheet
# study_data_indiv <- rio::import(here::here("nutrition_survey.xlsx", 
#                               which = "r1", na = "")


## Excel file with password ----------------------------------------------------
## Use this section if your Excel has a password.

# install.packages(c("excel.link", "askpass"))
# library(excel.link)

# study_data_hh <- xl.read.file(here::here("nutrition_survey.xlsx"),
#                              xl.sheet = "nutrition_survey_erb",
#                              password = askpass::askpass(prompt = "please enter file password"))

# study_data_indiv <- xl.read.file(here::here("nutrition_survey.xlsx"),
#                              xl.sheet = "r1",
#                              password = askpass::askpass(prompt = "please enter file password"))
## Excel file ------------------------------------------------------------------
## to read in a specific sheet use "which"
# study_data_hh <- rio::import(here::here("nutrition_survey.xlsx"), which = "Sheet1")

## Excel file -- Specific range ------------------------------------------------
## you can specify a range in an excel sheet.
# study_data_hh <- rio::import(here::here("nutrition_survey.xlsx"), range = "B2:J102")

## Excel file with password ----------------------------------------------------
## use this section if your Excel has a password.
# install.packages(c("excel.link", "askpass"))
# library(excel.link)
# study_data_hh <- xl.read.file(here::here("nutrition_survey.xlsx"),
#                              xl.sheet = "Sheet1",
#                              password = askpass::askpass(prompt = "please enter file password"))

## CSV file --------------------------------------------------------------------
# study_data_hh <- rio::import(here::here("nutrition_survey.csv"))

## Stata data file -------------------------------------------------------------
# study_data_hh <- rio::import(here::here("nutrition_survey.dat"))
## join the individual and household data to form a complete data set
#study_data_raw <- left_join(study_data_hh, study_data_indiv, by = c("_index" = "_parent_index"))
## Data dictionary -------------------------------------------------------------


## read in a kobo data dictionary
## important to specify template is FALSE (otherwise you get the generic dict)
# study_data_dict <- msf_dict_survey(name = here::here("nutrition_survey_dict.xlsx"), 
#                                    template = FALSE)

## look at the dictionary by uncommenting the line below
# View(study_data_dict) 


## Clean column names ----------------------------------------------------------
## This step fixes the column names so they are easy to use in R.


## make a copy of your orginal dataset and name it study_data_cleaned
study_data_cleaned <- study_data_raw

## Sometimes you want to rename specific variables
## The formula for this is rename(data, NEW_NAME = OLD_NAME). 
## You can add multiple column name recodes by simply separating them with a comma
# study_data_cleaned <- rename(study_data_cleaned,
#                              violence_nature_other_details    =  violence_nature_other)

## define clean variable names using clean_names from the janitor package. 
study_data_cleaned <- janitor::clean_names(study_data_cleaned)

## create a unique identifier by combining indeces of the two levels 
## x and y are added on to the end of variables that are duplicated 
## (in this case, parent and child index)
# study_data_cleaned <- study_data_cleaned %>% 
#   mutate(uid = str_glue("{index}_{index_y}"))
## MSF Survey Dictionary ----------------------------------------------------------

## generates MSF standard dictionary for Kobo 
# study_data_dict <- msf_dict_survey("Nutrition")
## generates MSF standard dictionary for Kobo in long format (for recoding)
# study_data_dict_long <- msf_dict_survey(disease = "Nutrition", compact = FALSE)

## look at the standard dictionary by uncommenting the line below
# View(study_data_dict) 
## You will need to recode your variables to match the data dictionary. This is
## addressed below.



## Clean column names ----------------------------------------------------------
## This step fixes the column names so they are easy to use in R.

## make a copy of your orginal dataset and name it study_data_cleaned
# study_data_cleaned <- study_data_raw

## define clean variable names using clean_names from the janitor package. 
# study_data_cleaned <- janitor::clean_names(study_data_cleaned)

## Match column names ---------------------------------------------------------
## This step helps you match your variables to the standard variables.
## This step will require some patience. Courage!

## Use the function msf_dict_rename_helper() to create a template based on the
## standard dictionary. This will copy a rename command like the one above to your
## clipboard.

# msf_dict_rename_helper("nutrition", varnames = "name")

## Paste the result below and your column names to the matching variable.

## Be careful! You still need to be aware of what each variable means and what
## values it takes.

## If there are any variables that are in the MSF dictionary that are not in
## your data set, then you should comment them out, but be aware that some
## analyses may not run because of this. 


## PASTE HERE


## Here is an EXAMPLE for changing a few specific names. function. In this
## example, we have the columns "gender" and "age" that we want to rename as
## "sex" and "age_years". 
## The formula for this is rename(data, NEW_NAME = OLD_NAME).

# study_data_cleaned <- rename(study_data_cleaned, 
#                            sex       = gender, # TEXT
#                            age_years = age     # INTEGER_POSITIVE
# )
## Read data -------------------------------------------------------------------

## This step reads in your population data from Excel.
## You may need to rename your columns.

# population_data <- rio::import(here::here("population.xlsx"), which = "Sheet1")

## repeat preparation steps as appropriate


## Enter counts directly -------------------------------------------------------


## Below is an example of how to enter population counts by groups. 

# population_data_age <- gen_population(
#   groups = c("0-2", "3-14", "15-29", "30-44", "45+"),
#   counts = c(3600, 18110, 13600, 8080, 6600),
#   strata = NULL) %>%
#   rename(age_group = groups,
#     population = n)


## Create counts from proportions ----------------------------------------------
## This step helps you estimate sub-group size with proportions.
## You need to replace the total_pop and proportions. You can change the groups
## to fit your needs. 

## Here we repeat the steps for two regions (district A and B) then bind the two
## together 


## generate population data by age groups in years for district A
population_data_age_district_a <- gen_population(total_pop = 10000, # set total population 
  groups      = c("6-11", "12-23", "24-35", "36-47", "48-60"), # set groups
  proportions = c(0.0164, 0.0164, 0.015, 0.015, 0.015), # set proportions for each group
  strata      = c("Male", "Female")) %>%           # stratify by gender
  rename(age_group  = groups,                      # rename columns (NEW NAME = OLD NAME)
         sex        = strata,
         population = n) %>% 
  mutate(health_district = "district_a")           # add a column to identify region 


## generate population data by age groups in years for district B
population_data_age_district_b <- gen_population(total_pop = 10000, # set total population 
  groups      = c("6-11", "12-23", "24-35", "36-47", "48-60"), # set groups
  proportions = c(0.0164, 0.0164, 0.015, 0.015, 0.015), # set proportions for each group
  strata      = c("Male", "Female")) %>%           # stratify by gender
  rename(age_group  = groups,                      # rename columns (NEW NAME = OLD NAME)
         sex        = strata,
         population = n) %>% 
  mutate(health_district = "district_b")           # add a column to identify region 



## bind region population data together to get overall population 
population_data_age <- bind_rows(population_data_age_district_a, 
                                 population_data_age_district_b)
cluster_counts <- tibble(cluster = c("Village 1", "Village 2", "Village 3", "Village 4", 
                                     "Village 5", "Village 6", "Village 7", "Village 8",
                                     "Village 9", "Village 10"), 
                         households = c(700, 400, 600, 500, 300, 
                                        800, 700, 400, 500, 500))
## view the first ten rows of data
head(study_data_raw, n = 10)

## view your whole dataset interactivley (in an excel style format)
View(study_data_raw)

## overview of variable types and contents
str(study_data_raw)

## gives mean, median and max values of variables
## gives counts for categorical variables
## also gives number of NAs
summary(study_data_raw)

## view unique values contained in variables 
## you can run this for any column -- just replace the column name
unique(study_data_raw$sex)

## check for logical inconsistencies 
## for example check age <6 months and height >100 cm and return corresponding IDs
study_data_raw %>% 
  filter(age_month < 6 & height > 100) %>% 
  select("uid")

## use the dfSummary function in combination with view
## note that view is not capitalised with this package
# summarytools::dfSummary(study_data_cleaned) %>%
#   summarytools::view()
## Kobo standard data --------------------------------------------------------
## If you got your data from Kobo, use this portion of the code.
## If not, comment this section out and use the below.

## make sure all date variables are formatted as dates 
## get the names of variables which are dates
DATEVARS <- study_data_dict %>% 
  filter(type == "date") %>% 
  filter(name %in% names(study_data_cleaned)) %>% 
  ## filter to match the column names of your data
  pull(name) # select date vars

## find if there are date variables which are completely empty
EMPTY_DATEVARS <- purrr::map(DATEVARS, ~all(
  is.na(study_data_cleaned[[.x]])
  )) %>% 
  unlist() %>% 
  which()

## remove exclude the names of variables which are completely emptys
DATEVARS <- DATEVARS[-EMPTY_DATEVARS]

## change to dates 
## use the parse_date() function to make a first pass at date variables.
## parse_date() produces a complicated format - so we use as.Date() to simplify
study_data_cleaned <- study_data_cleaned %>%
  mutate(
    across(.cols = all_of(DATEVARS),
           .fns = ~parsedate::parse_date(.x) %>% as.Date()))

## Non-Kobo data -------------------------------------------------------------
## Use this section if you did not have Kobo data.  

## use the parse_date() function to make a first pass at date variables.
## parse_date() produces a complicated format - so we use as.Date() to simplify
# study_data_cleaned <- study_data_cleaned %>%
#   mutate(
#     across(.cols = matches("date|Date"),
#            .fns  = ~parsedate::parse_date(.x) %>% as.Date()))

## Fix wrong dates ------------------------------------------------------------- 

## Some dates will be unrealistic or wrong.
## Here is an example of how to manually fix dates. 
## Look at your data and edit as needed.

## set specific unrealistic dates to NA
# study_data_cleaned <- mutate(study_data_cleaned,
#                            date < as.Date("2017-11-01") ~ as.Date(NA), 
#                            date == as.Date("2081-01-01") ~ as.Date("2018-01-01"))
## Age group variables ----------------------------------------------------------
## This step shows you how to create categorical variables from numeric variables.
## We have some intermediate steps on the way.

## make sure age is an integer 
study_data_cleaned <- study_data_cleaned %>% 
  mutate(age_months = as.integer(age_months),
         age_years  = as.integer(age_months))

## add convert years to months (for those over 1 year) 
study_data_cleaned <- study_data_cleaned %>% 
  mutate(age_months = if_else(
    age_years >= 1, 
    as.integer(age_years * 12), 
    as.integer(age_months)
    ))


## create an age group variable (combining those over 24 months and those under) 
study_data_cleaned <- study_data_cleaned %>%
  mutate(age_group_bin = factor(
    if_else(age_months >= 24,
      "24-60",
      "0-23"
    )
  ))


## create age group variable for based on months
study_data_cleaned <- study_data_cleaned %>%
  mutate(age_group = age_categories(study_data_cleaned$age_months,
                                    breakers = c(6, 12, 24, 36, 48, 60),
                                    ceiling = TRUE))


## alternatively, create an age group variable specify a sequence
# study_data_cleaned$age_group <- age_categories(study_data_cleaned$age,
#                                                lower = 0, 
#                                                upper = 100, 
#                                                by = 10)

## If you already have an age group variable defined, you should manually
## arrange the categories
# study_data_cleaned$age_group <- factor(study_data_cleaned$age_group,
#                                        c("0-4y", "5-14y", "15-29y", "30-44y", "45+y"))


## to combine different age categories use the following function 
## this prioritises the smaller unit, i.e. if given months and years, will return months first
# study_data_cleaned <- group_age_categories(study_data_cleaned, 
#                                            years  = age_group,
#                                            months = age_group_mon)
## recode values with matchmaker package (value labels cant be used for analysis) 
study_data_cleaned <- match_df(study_data_cleaned, 
         study_data_dict_long, 
         from = "option_name", 
         to = "option_label_english", 
         by = "name", 
         order = "option_order_in_set")
## Change a yes/no variable in to TRUE/FALSE
## create a new variable called consent 
## where the old one is yes place TRUE in the new one
## (this could also be done with the if_else or case_when function - 
## but this option is shorter)
study_data_cleaned <- study_data_cleaned %>% 
  mutate(consent = consent == "Yes")


## Change a character to factor - set the levels of a factor 
study_data_cleaned <- study_data_cleaned %>%
  mutate(sex = factor(sex,
                      levels = c("Female", "Male"))
  )

## recode the levels of a factor 
## put these in a second variable called sex_brief
## (this is necessary because the anthro package doesnt accept "Male"/"female")
study_data_cleaned <- study_data_cleaned %>% 
  mutate(sex_brief = fct_recode(sex, 
                                "F" = "Female", 
                                "M" = "Male")
  )

# ## change the order of levels
# study_data_cleaned <- study_data_cleaned %>% 
#   mutate(soap = fct_relevel(soap, 
#                             "Distribution", 
#                             "Healthcentre", 
#                             "Never")
#         )


# ## create a new grouping for soap variable 
# ## simplified, distribution or health centre then covered otherwise not covered 
# study_data_cleaned <- study_data_cleaned %>% 
#   mutate(coverage = if_else(soap %in% c("Distribution", "Healthcentre"),
#                             "Covered", 
#                             "Not covered")
#   )


## Recode character variables
## This step shows how to fix misspellings in the geographic region variable.
## Ideally, you want these values to match and population data!
# study_data_cleaned <- study_data_cleaned %>%
#   mutate(village_name = case_when(
#     village_name == "Valliages 1"       ~ "village 1",
#     village_name == "Village1"          ~ "village 1",
#     village_name == "Town 3"            ~ "village 3"
#     village_name == "Town3"             ~ "village 3",
#     TRUE ~ as.character(village_name))
#   ))

## create a character variable based off groups of a different variable 
study_data_cleaned <- study_data_cleaned %>% 
  mutate(health_district = case_when(
    cluster_number %in% c(1:5) ~ "district_a", 
    TRUE ~ "district_b"
  ))

## explicitly replace NA of a factor
# study_data_cleaned <- study_data_cleaned %>%
#   mutate(coverage = fct_explicit_na(coverage, na_level = "Not Applicable"))


## if you had a multi-choice question and the missing values were given as a "."
## replace missing values in multi-choice questions to "" so that we can
## filter them out later.
# study_data_cleaned <- study_data_cleaned %>%
#   mutate(
#     across(
#       .cols = contains("violence"), # all variables that contain the word "violence"
#       .fns = ~fct_explicit_na(as.character(.), "") # replace missing values with ""
#       )
#     )

## fix factor levels -----------------------------------------------------------

## make sure there are the appropriate levels (names)
study_data_cleaned$no_consent_reason <- fct_recode(study_data_cleaned$no_consent_reason,
                                            "No time" = "I do not have time",
                                            "Previous negative experience" = "I have had a negative experience with a previous survey.",
                                            "No perceived benefit" = "There is no benefit to me and my family"
                                           )
## anthro zscores --------------------------------------------------------------

## retrieve zscores 
zscore_results <- with(study_data_cleaned, anthro_zscores(
  sex = as.character(sex_brief),
  age = age_months,
  is_age_in_month = TRUE,
  weight = weight,
  lenhei = height,
  oedema = as.numeric(oedema),
  armc = muac / 10 # convert to cm
))


## add columns from zscore_results columns to study dataset
study_data_cleaned <- bind_cols(study_data_cleaned, zscore_results)

## categorise children ---------------------------------------------------------

## weight for height z-scores
## * Global acute malnutrition (GAM): a WHZ score of less than (<) -2 and/or oedema;
## * Moderate acute malnutrition: WHZ score <-2 and ≥ -3 and no oedema; 
## * Severe acute malnutrition (SAM): WHZ score <-3 and/or oedema.
study_data_cleaned <- study_data_cleaned %>% 
  mutate(
    gam_whz = zwfl <  -2 | oedema == "Yes", 
    mam_whz = zwfl >= -3 & zwei < -2, 
    sam_whz = zwfl <  -3 | oedema == "Yes"
  ) %>%
  ## set flagged children to NA for each of the indicator variables
    ## if the flag for this indicator is not missing and is 1 then set indicator vars to NA
    ## else leave the indicator variable as it was
  mutate(
    across(
      .cols = c(gam_whz, mam_whz, sam_whz), # select the indicator variables
      .fns = ~if_else(!is.na(fwfl) & fwfl == 1, NA, .)) # NA if flagged, else leave as is
    )




## stunting according to height for age z-scores
## * Stunting: HAZ score <-2;
## * Moderate stunting: HAZ score >=-3 and <-2; 
## * Severe stunting: HAZ score <-3.
study_data_cleaned <- study_data_cleaned %>% 
  mutate(
    stunting_haz = zlen < -2, 
    moderate_stunting_haz = zlen >= -3 & zlen < -2, 
    severe_stunting_haz = zlen < -3
  ) %>%
  ## set flagged children to NA for each of the indicator variables
    ## if the flag for this indicator is not missing and is 1 then set indicator vars to NA
    ## else leave the indicator variable as it was
  mutate(
    across(
      .cols = c(stunting_haz, 
                         moderate_stunting_haz, 
                         severe_stunting_haz), # select the indicator variables
      .funs = ~if_else(!is.na(flen) & flen == 1, NA, .))) # NA if flagged, else leave as is



## underweight according to height for age z-scores 
## * Underweight: WAZ score < -2 OR oedema; 
## * moderate underweight: WAZ score >=-3 and <-2; 
## * Severe underweight: WAZ < -3 OR oedema
study_data_cleaned <- study_data_cleaned %>% 
  mutate(
    underweight_waz = zwei < -2 | oedema == "Yes", 
    moderate_underweight_waz = zwei >= -3 & zwei < -2, 
    severe_underweight_waz = zwei < -3 | oedema == "Yes"
  ) %>%
  ## set flagged children to NA for each of the indicator variables
    ## if the flag for this indicator is not missing and is 1 then set indicator vars to NA
    ## else leave the indicator variable as it was
  mutate(
    across(
      .cols = c(underweight_waz, 
                moderate_underweight_waz, 
                severe_underweight_waz), # select the indicator variables
      .fns = ~if_else(!is.na(fwei) & fwei == 1, NA, .))) # NA if flagged, else leave as is



## according to MUAC 
## * Global acute malnutrition (GAM): MUAC of <125mm and/or oedema;
## * Moderate acute malnutrirtion: MUAC <125mm and >= 115mm and no oedema;
## * Severe acute malnutrition (SAM): MUAC <115mm and/or oedema.
study_data_cleaned <- study_data_cleaned %>% 
  mutate(
    gam_muac = muac < 125 | oedema == "Yes", 
    mam_muac = muac < 125 & muac >= 115 & oedema == "No", 
    sam_muac = muac < 115 |  oedema == "Yes"
  )

## group indicator variables ---------------------------------------------------

## define all the indicators of interest 
## we will use this to run the same function over all variables later on

WHZ <- c("gam_whz",
         "mam_whz",
         "sam_whz")

HAZ <- c("stunting_haz", 
         "moderate_stunting_haz", 
         "severe_stunting_haz")

WAZ <- c("underweight_waz", 
         "moderate_underweight_waz", 
         "severe_underweight_waz")

MUAC <- c("gam_muac", 
          "mam_muac", 
          "sam_muac")


indicators <- c(WHZ, HAZ, WAZ, MUAC)


## turn all indicators in to factors 
study_data_cleaned <- study_data_cleaned %>%
  mutate(
    across(
      .cols = all_of(indicators), # all variables named in indicators
      .fns = factor # turn into a factor
      )) 


## turn all flags in to TRUE/FALSE variables
study_data_cleaned <- study_data_cleaned %>%
  mutate(
    across(
      .cols = all_of(c("fwei", "flen", "fwfl")), # names of flag variables
      .fns = as.logical # turn in to logical
      ))
## create variable names with labelled  

## define a list of names and labels based on the dictionary 
var_labels <- setNames(
  ## add variable labels as a list
  as.list(study_data_dict$short_name), 
  ## name the list with the current variable names
  study_data_dict$name)

## add the variable labels to dataset 
study_data_cleaned <- study_data_cleaned %>% 
  set_variable_labels(
    ## set the labels with the object defined above
    .labels = var_labels, 
    ## do not throw an error if some names dont match 
    ## not all names in the dictionary appear in the dataset 
    .strict = FALSE)

## it is possible to update individual variables manually too
study_data_cleaned <- study_data_cleaned %>% 
  set_variable_labels(
    ## variable name = variable label 
    age_years                = "Age (years)",
    age_months               = "Age (months)", 
    age_group                = "Age group (months)", 
    age_group_bin            = "Age category (months)",
    flen                     = "HAZ", 
    fwei                     = "WAZ", 
    fwfl                     = "WHZ", 
    gam_muac                 = "GAM", 
    mam_muac                 = "MAM" ,  
    sam_muac                 = "SAM", 
    moderate_stunting_haz    = "Moderate stunting", 
    severe_stunting_haz      = "Severe stunting", 
    stunting_haz             = "Stunting",
    moderate_underweight_waz = "Moderate underweight",
    severe_underweight_waz   = "Severe underweight", 
    underweight_waz          = "Underweight", 
    gam_whz                  = "GAM", 
    mam_whz                  = "MAM", 
    sam_whz                  = "SAM"
    )
## Drop unused rows  -----------------------------------------------------------

## store the cases that you drop so you can describe them (e.g. non-consenting)
dropped <- study_data_cleaned %>% 
  filter(!consent | age_months <  6 | age_months > 60 | 
           ## note that whatever you use for weights cannot be missing!
           village_name == "Other"| is.na(age_years) | is.na(sex))

## drop the unused rows from the survey data set  
study_data_cleaned <- anti_join(study_data_cleaned, dropped, by = names(dropped))


## Drop columns ----------------------------------------------------------------
## OPTIONAL: This step shows you how you can remove certain variables.
## study_data_cleaned <- select(study_data_cleaned, -c("age_years", "sex"))

## OPTIONAL: if you want to inspect certain variables, you can select these by
## name or column number. This example creates a reduced dataset for the first
## three columns, age_years, and sex.

# study_data_reduced <- select(study_data_cleaned, c(1:3, "age_years", "sex")
## option 1: only keep the first occurrence of duplicate case 
study_data_cleaned <- study_data_cleaned %>% 
  ## find duplicates based on case number, sex and age group 
  ## only keep the first occurrence 
  distinct(uid, sex, age_group, .keep_all = TRUE)

# ## option 2: create flagging variables for duplicates (then use to browse)
# 
# study_data_cleaned <- study_data_cleaned %>% 
#   ## choose which variables to use for finding unique rows 
#   group_by(uid, sex, age_group) %>% 
#   mutate(
#     ## get the number of times duplicate occurs 
#     num_dupes = n(), 
#     duped = if_else(num_dupes > 1 , TRUE, FALSE)
#   )
# 
# ## browse duplicates based on flagging variables 
# study_data_cleaned %>% 
#   ## only keep rows that are duplicated
#   filter(duped) %>% 
#   ## arrange by variables of interest 
#   arrange(uid, sex, age_group) %>% 
#   View()
# 
# ## filter duplicates to only keep the row with the earlier entry 
# study_data_cleaned %>% 
#   ## choose which variables to use for finding unique rows 
#   group_by(uid, sex, age_group) %>% 
#   ## sort to have the earliest date by person first
#   arrange(as.Date(start)) %>% 
#   ## only keep the earliest row 
#   slice(1)
## stratified ------------------------------------------------------------------

## create a variable called "surv_weight_strata" 
## contains weights for each individual - by age group, sex and health district
study_data_cleaned <- add_weights_strata(x = study_data_cleaned, 
                                         p = population_data_age, 
                                         surv_weight = "surv_weight_strata",
                                         surv_weight_ID = "surv_weight_ID_strata",
                                         age_group, sex, health_district)


## cluster ---------------------------------------------------------------------

## get the number of individuals interviewed per household 
## adds a variable with counts of the household (parent) index variable
study_data_cleaned <- study_data_cleaned %>% 
  add_count(index, name = "interviewed")


## create cluster weights 
study_data_cleaned <- add_weights_cluster(x = study_data_cleaned, 
                                          cl = cluster_counts, 
                                          eligible = number_children, 
                                          interviewed = interviewed, 
                                          cluster_x = village_name, 
                                          cluster_cl = cluster, 
                                          household_x = index, 
                                          household_cl = households, 
                                          surv_weight = "surv_weight_cluster", 
                                          surv_weight_ID = "surv_weight_ID_cluster", 
                                          ignore_cluster = FALSE, 
                                          ignore_household = FALSE)

## stratified and cluster ------------------------------------------------------

## create a survey weight for cluster and strata 
study_data_cleaned <- study_data_cleaned %>% 
  mutate(surv_weight_cluster_strata = surv_weight_strata * surv_weight_cluster)
## simple random ---------------------------------------------------------------

survey_design_simple <- study_data_cleaned %>% 
  as_survey_design(ids = 1, # 1 for no cluster ids 
                   weights = NULL, # No weight added
                   strata = NULL # sampling was simple (no strata)
                  )

## stratified ------------------------------------------------------------------

survey_design_strata <- study_data_cleaned %>% 
  as_survey_design(ids = 1, # 1 for no cluster ids 
                   weights = surv_weight_strata, # weight variable created above 
                   strata = health_district # sampling was stratified by district
                  )

## cluster ---------------------------------------------------------------------

survey_design_cluster <- study_data_cleaned %>% 
  as_survey_design(ids = village_name,  # cluster ids 
                   weights = surv_weight_cluster, # weight variable created above 
                   strata = NULL # sampling was simple (no strata)
                  )

## stratified cluster ----------------------------------------------------------

survey_design <- study_data_cleaned %>% 
  as_survey_design(ids = village_name,  # cluster ids  
                   weights = surv_weight_cluster_strata, # weight variable created above 
                   strata = health_district # sampling was stratified by district
                  )
rio::export(study_data_cleaned, here::here("data", str_glue("study_data_cleaned_{Sys.Date()}.xlsx")))

Results

Survey inclusion

## get counts of number of clusters 
num_clus <- study_data_cleaned %>%
  ## trim data to unique clusters
  distinct(cluster_number) %>% 
  ## get number of rows (count how many unique)
  nrow()

## get counts of number households 
num_hh <- study_data_cleaned %>% 
  ## get unique houses by cluster
  distinct(cluster_number, household_number) %>% 
  ## get number of rounds (count how many unique)
  nrow()

We included r num_hh households across r num_clus clusters in this survey analysis.

Among the r nrow(dropped) individuals excluded from the survey analysis, r fmt_count(dropped, consent) individuals were excluded for not being between 6 and 60 months and r fmt_count(dropped, !consent) were excluded for lack of consent. The reasons for no consent are shown below.

## using the dataset with dropped individuals 
dropped %>% 
  ## only keep reasons for no consent 
  select(no_consent_reason) %>% 
  ## make NAs a factor level called missing
  ## to make the proportion of the total, including the missings
  mutate(no_consent_reason = fct_explicit_na(no_consent_reason,
                                             na_level = "Missing")) %>%
  ## get counts and proportions 
  tbl_summary() %>% 
  ## make variable names bold 
  bold_labels() %>% 
  # change to flextable format
  as_flex_table() %>%
  # make header text bold (using {flextable})
  bold(part = "header") %>% 
  # make your table fit to the maximum width of the word document
  set_table_properties(layout = "autofit")
## get counts of the number of households per cluster
clustersize <- study_data_cleaned %>% 
  ## trim data to only unique households within each cluster
  distinct(cluster_number, household_number) %>%
  ## count the number of households within each cluster
  count(cluster_number) %>% 
  pull(n)

## get the median number of households per cluster
clustermed <- median(clustersize)

## get the min and max number of households per cluster
## paste these together seperated by a dash 
clusterrange <- str_c(range(clustersize), collapse = "--")

## get counts of children per household 
## do this by cluster as household IDs are only unique within clusters
hhsize <- study_data_cleaned %>% 
  count(cluster_number, household_number) %>%
  pull(n) 

## get median number of children per household
hhmed <- median(hhsize)
## get the min and max number of children per household
## paste these together seperated by a dash 
hhrange <- str_c(range(hhsize), collapse = "--")

## get standard deviation 
hhsd <- round(sd(hhsize), digits = 1)

The median number of households per cluster was r clustermed, with a range of r clusterrange. The median number of children per household was r hhmed (range: r hhrange, standard deviation: r hhsd).

Demographic information

In total we included r nrow(study_data_cleaned) in the survey analysis. The age break down and a comparison with the source population is shown below.

## counts and props of the study population
ag <- tabyl(study_data_cleaned, age_group, show_na = FALSE) %>% 
  mutate(n_total = sum(n), 
         age_group = fct_inorder(age_group))


## counts and props of the source population
propcount <- population_data_age %>% 
  group_by(age_group) %>%
    tally(population) %>%
    mutate(percent = n / sum(n))

## bind together the columns of two tables, group by age, and perform a 
## binomial test to see if n/total is significantly different from population
## proportion.
  ## suffix here adds to text to the end of columns in each of the two datasets
left_join(ag, propcount, by = "age_group", suffix = c("", "_pop")) %>%
  group_by(age_group) %>%

  ## broom::tidy(binom.test()) makes a data frame out of the binomial test and
  ## will add the variables p.value, parameter, conf.low, conf.high, method, and
  ## alternative. We will only use p.value here. You can include other
  ## columns if you want to report confidence intervals
  mutate(binom = list(broom::tidy(binom.test(n, n_total, percent_pop)))) %>%
  unnest(cols = c(binom)) %>% # important for expanding the binom.test data frame
  mutate(
    across(.cols = contains("percent"), 
            .fns = ~.x * 100)) %>%

  ## Adjusting the p-values to correct for false positives 
  ## (because testing multiple age groups). This will only make 
  ## a difference if you have many age categories
  mutate(p.value = p.adjust(p.value, method = "holm")) %>%

  ## Only show p-values over 0.001 (those under report as <0.001)
  mutate(p.value = ifelse(p.value < 0.001, "<0.001", as.character(round(p.value, 3)))) %>%

  ## rename the columns appropriately
  select(
    "Age group" = age_group,
    "Study population (n)" = n,
    "Study population (%)" = percent,
    "Source population (n)" = n_pop,
    "Source population (%)" = percent_pop,
    "P-value" = p.value
  ) %>%
  # produce styled output table with auto-adjusted column widths with {flextable}
  qflextable() %>% 
  # make header text bold (using {flextable})
  bold(part = "header") %>% 
  # make your table fit to the maximum width of the word document
  set_table_properties(layout = "autofit") %>% 
  ## set to only show 1 decimal place 
  colformat_double(digits = 1)
## compute the median age 
medage <- median(study_data_cleaned$age_months)
## paste the lower and uper quartile together
iqr <- str_c(  # basically copy paste together the following
  ## calculate the 25% and 75% of distribution, with missings removed
  quantile(     
    study_data_cleaned$age_months, 
    c(0.25, 0.75), 
    na.rm = TRUE), 
  ## between lower and upper place an en-dash
  collapse = "--")


## compute overall sex ratio 
sex_ratio <- study_data_cleaned %>% 
  count(sex) %>% 
  pivot_wider(names_from = sex, values_from = n) %>% 
  mutate(ratio = round(Male/Female, digits = 3)) %>%
  pull(ratio)

## compute sex ratios by age group 
sex_ratio_age <- study_data_cleaned %>% 
  count(age_group, sex) %>% 
  pivot_wider(names_from = sex, values_from = n) %>% 
  mutate(ratio = round(Male/Female, digits = 3)) %>%
  select(age_group, ratio)

## sort table by ascending ratio then select the lowest (first)
min_sex_ratio_age <- arrange(sex_ratio_age, ratio) %>% slice(1)

Among the r nrow(study_data_cleaned) surveyed individuals, there were r fmt_count(study_data_cleaned, sex == "Female") females and r fmt_count(study_data_cleaned, sex == "Male") males (unweighted). The male to female ratio was r sex_ratio in the surveyed population. The lowest male to female ratio was r min_sex_ratio_age$ratio in the r min_sex_ratio_age$age_group month age group. The median age of surveyed individuals was r medage years (Q1-Q3 of r iqr years). Children under two years of age made up r fmt_count(study_data_cleaned, age_group_bin == "0-23")of the surveyed individuals. The highest number of surveyed individuals (unweighted) were in the r table(study_data_cleaned$age_group) %>% which.max() %>% names() year age group.

Unweighted age distribution of household population by year age group and gender.

# get cross tabulated counts and proportions
study_data_cleaned %>% 
  tbl_cross( 
    row = age_group, 
    col = sex, 
    percent = "cell") %>% 
  # change to flextable format
  as_flex_table() %>%
  # make header text bold (using {flextable})
  bold(part = "header") %>% 
  # make your table fit to the maximum width of the word document
  set_table_properties(layout = "autofit")

There were r fmt_count(dropped, is.na(sex)) cases missing information on sex and r fmt_count(dropped, is.na(age_group)) missing age group.

Unweighted age and gender distribution of household population covered by the survey.

age_pyramid(study_data_cleaned, 
            age_group, 
            split_by = sex, 
            proportional = TRUE) + 
  labs(y = "Proportion", x = "Age group (months)") +    # change axis labels
  theme(legend.position = "bottom",     # move legend to bottom
        legend.title = element_blank(), # remove title
        text = element_text(size = 18)  # change text size
       )

Unweighted age and gender distribution, stratified by health district, of household population covered by the survey. <!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// age_pyramid_strata \\


This chunk creates an unweighted (using study_data_cleaned) age/sex pyramid of your cases, stratified by health district.

If you have a stratified survey design this may be useful for visualising if you have an excess of representation in either sex or gender in any of your survey strata. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->

age_pyramid(study_data_cleaned, 
                 age_group, 
                 split_by = sex,
                 stack_by = health_district,
                 proportional = TRUE, 
                 pal = c("red", "blue")) + 
  labs(y = "Proportion", x = "Age group (months)") +    # change axis labels
  theme(legend.position = "bottom",     # move legend to bottom
        legend.title = element_blank(), # remove title
        text = element_text(size = 18)  # change text size
       )

Weighted age and gender distribution of household population covered by the survey.

age_pyramid(survey_design,
                 age_group,
                 split_by = sex, 
                 proportion = TRUE) +
  labs(y = "Proportion (weighted)", x = "Age group (months)") + # change axis labels
  theme(legend.position = "bottom",     # move legend to bottom
        legend.title = element_blank(), # remove title
        text = element_text(size = 18)  # change text size
       )

Quality of indicators collected

Box plot of Zscores for height-for-age, weight-for-age and weight-for-height

## pull variables together for plotting 
temp_data <- study_data_cleaned %>%
  ## stack variable names in one column and values for vars in another
  ## call first column indicator and second column zscore
  pivot_longer(cols = c(zwfl, zlen, zwei), 
               names_to = "Indicator", 
               values_to = "Zscore") %>%
  ## only keep variables of interest
  select(Indicator, Zscore) %>% 
  ## rename indicators to something more understandable
  mutate(
    Indicator = fct_recode(Indicator, 
    "HAZ" = "zlen", 
    "WAZ" = "zwei", 
    "WHZ" = "zwfl"  
  ))


## use indicators on the x-axis and z-score on the y-axis
ggplot(temp_data, aes(x = Indicator, y = Zscore)) + 
  ## plot as a box plot
  geom_boxplot() + 
  ## add a dotted horizontal line at 0 for reference 
  geom_hline(yintercept = 0, linetype = "dashed")

Box plot of Zscores for height-for-age, weight-for-age and weight-for-height by sex

## pull variables together for plotting 
temp_data <- study_data_cleaned %>%
  ## stack variable names in one column and values for vars in another
  ## call first column indicator and second column zscore
  pivot_longer(cols = c(zwfl, zlen, zwei), 
               names_to = "Indicator", 
               values_to = "Zscore") %>%
  ## only keep variables of interest
  select(sex, Indicator, Zscore) %>% 
  ## rename indicators to something more understandable
  mutate(
    Indicator = fct_recode(Indicator, 
    "HAZ" = "zlen", 
    "WAZ" = "zwei", 
    "WHZ" = "zwfl" 
  ))

## use indicators on the x-axis and z-score on the y-axis
## colour according to sex 
ggplot(temp_data, aes(x = Indicator, y = Zscore, fill = sex)) + 
  ## plot as a boxplot
  geom_boxplot() + 
  ## add a dotted horizontal line at 0 for reference 
  geom_hline(yintercept = 0, linetype = "dashed") + 
  ## remove the title of legend 
  theme(legend.title = element_blank())

Box plot of Zscores for height-for-age by age group

## use age group on the x-axis and  height z-score  on the y-axis
ggplot(study_data_cleaned, aes(x = age_group, y = zlen)) + 
  ## plot as a boxplot
  geom_boxplot() + 
  ## add a dotted horizontal line at 0 for reference 
  geom_hline(yintercept = 0, linetype = "dashed") + 
  ## change axis titles 
  labs(x = "Age group (Months)", y = "HAZ score") 

Box plot of Zscores for weight-for-age by age group

## use age group on the x-axis and  weight z-score  on the y-axis
ggplot(study_data_cleaned, aes(x = age_group, y = zwei)) + 
  ## plot as a boxplot
  geom_boxplot() + 
  ## add a dotted horizontal line at 0 for reference 
  geom_hline(yintercept = 0, linetype = "dashed") + 
  ## change axis titles 
  labs(x = "Age group (Months)", y = "WAZ score") 

Box plot of Zscores for weight-for-height by age group

## use age group on the x-axis and  weight-height z-score  on the y-axis
ggplot(study_data_cleaned, aes(x = age_group, y = zwfl)) + 
  ## plot as a boxplot
  geom_boxplot() + 
  ## add a dotted horizontal line at 0 for reference 
  geom_hline(yintercept = 0, linetype = "dashed") + 
  ## change axis titles 
  labs(x = "Age group (Months)", y = "WHZ score") 

Unweighted z-curve of height-for-age among non-flagged children for this indicator <!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// zcurve_haz \\


This chunk creates a z-curve of height-for-age compared to the WHO reference population ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->

study_data_cleaned %>% 
  ## only consider z-scores that are not flagged
  filter(flen == FALSE) %>% 
  ## plot zcurve
  zcurve(zlen)

Unweighted z-curve of weight-for-age among non-flagged children for this indicator <!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// zcurve_haz \\


This chunk creates a z-curve of weight-for-age compared to the WHO reference population ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->

study_data_cleaned %>% 
  ## only consider z-scores that are not flagged
  filter(fwei == FALSE) %>% 
  ## plot zcurve
  zcurve(zwei)

Unweighted z-curve of weight-for-height among non-flagged children for this indicator <!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// zcurve_whz \\


This chunk creates a z-curve of weighted-for-height compared to the WHO reference population ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->

study_data_cleaned %>% 
  ## only consider z-scores that are not flagged
  filter(fwfl == FALSE) %>% 
  ## plot zcurve
  zcurve(zwfl)

Unweighted counts and proportions of children missing or flagged for indicators <!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// missing_flagged_indicators \\


This chunk creates an unweighted table of number children with missing or flagged indicators ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->

study_data_cleaned %>% 
  select(flen, fwei, fwfl) %>% 
  ## mutate each of the flags be easier to enterprate  
  mutate(
    across(everything(), 
            ~case_when(
              .x == TRUE  ~ "Flagged", 
              .x == FALSE ~ "Included", 
              TRUE        ~ "Missing"
            ))
  ) %>% 
  # Variable labels are removed by mutate(across(..)) for some reason
  set_variable_labels(
    ## variable name = variable label 
    flen          = "HAZ", 
    fwei          = "WAZ", 
    fwfl          = "WHZ"
    ) %>% 
  tbl_summary() %>% 
  # change to flextable format
  as_flex_table() %>%
  # make header text bold (using {flextable})
  bold(part = "header") %>% 
  # make your table fit to the maximum width of the word document
  set_table_properties(layout = "autofit")

In addition the number of children missing MUAC was r fmt_count(study_data_cleaned, is.na(muac)).

Nutritional status based on indicators

Weighted prevalence of malnutrition based on MUAC, by age group (months) and overall

overall <- survey_design %>% 
  ## tabulate multiple variables with same values
  select(all_of(MUAC)) %>% 
  ## only show the row with TRUE
  tbl_svysummary(missing = "no", 
                 value = everything() ~ TRUE)

age_strat <- survey_design %>% 
  ## tabulate multiple variables with same values
  select(all_of(MUAC), age_group) %>% 
  ## only show the row with TRUE
  tbl_svysummary(missing = "no", 
                 value = everything() ~ TRUE, 
                 ## stratify by age group
                 by = age_group)

## combine the overall and stratified tables 
tbl_merge(list(overall, age_strat)) %>% 
  modify_spanning_header(
    list(
      ## rename the spanning header
      ## you can see what the columns are called by putting in an object and inspecting table_body
      stat_0_1    ~ "**Overall**", 
      c(stat_1_2,
        stat_2_2, 
        stat_3_2,
        stat_4_2,
        stat_5_2) ~ "**Age group (months)**")) %>% 
  # change to flextable format
  as_flex_table() %>%
  # make header text bold (using {flextable})
  bold(part = "header") %>% 
  # make your table fit to the maximum width of the word document
  set_table_properties(layout = "autofit")

Weighted prevalence of malnutrition based on MUAC among children <87cm, by age group (months) and overall <!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// muac_age_group_filter \\


This chunk creates a weighted table of prevalence based on MUAC for age groups and for the overall population among children under 87cm tall (using filter).

This happens in three stages: - Table for overall - Table for age groups - Bind the two together as rows ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->

overall <- survey_design %>% 
  ## only keep children less than 87cm
  filter(height < 87) %>%
  ## tabulate multiple variables with same values
  select(all_of(MUAC)) %>% 
  ## only show the row with TRUE
  tbl_svysummary(missing = "no", 
                 value = everything() ~ TRUE)

age_strat <- survey_design %>% 
  ## only keep children less than 87cm
  filter(height < 87) %>%
  ## tabulate multiple variables with same values
  select(all_of(MUAC), age_group) %>% 
  ## only show the row with TRUE
  tbl_svysummary(missing = "no", 
                 value = everything() ~ TRUE, 
                 ## stratify by age group
                 by = age_group)

## combine the overall and stratified tables 
tbl_merge(list(overall, age_strat)) %>% 
  modify_spanning_header(
    list(
      ## rename the spanning header
      ## you can see what the columns are called by putting in an object and inspecting table_body
      stat_0_1    ~ "**Overall**", 
      c(stat_1_2,
        stat_2_2, 
        stat_3_2,
        stat_4_2,
        stat_5_2) ~ "**Age group (months)**")) %>% #
  # change to flextable format
  as_flex_table() %>%
  # make header text bold (using {flextable})
  bold(part = "header") %>% 
  # make your table fit to the maximum width of the word document
  set_table_properties(layout = "autofit")

Weighted prevalence of malnutrition based on height-for-age z-score categories, by age group (months) and overall

overall <- survey_design %>% 
  ## tabulate multiple variables with same values
  select(all_of(HAZ)) %>% 
  ## only show the row with TRUE
  tbl_svysummary(missing = "no", 
                 value = everything() ~ TRUE)

age_strat <- survey_design %>% 
  ## tabulate multiple variables with same values
  select(all_of(HAZ), age_group) %>% 
  ## only show the row with TRUE
  tbl_svysummary(missing = "no", 
                 value = everything() ~ TRUE, 
                 ## stratify by age group
                 by = age_group)

## combine the overall and stratified tables 
tbl_merge(list(overall, age_strat)) %>% 
  modify_spanning_header(
    list(
      ## rename the spanning header
      ## you can see what the columns are called by putting in an object and inspecting table_body
      stat_0_1    ~ "**Overall**", 
      c(stat_1_2,
        stat_2_2, 
        stat_3_2,
        stat_4_2,
        stat_5_2) ~ "**Age group (months)**")) %>% 
  # change to flextable format
  as_flex_table() %>%
  # make header text bold (using {flextable})
  bold(part = "header") %>% 
  # make your table fit to the maximum width of the word document
  set_table_properties(layout = "autofit")

Weighted prevalence of malnutrition based on weight-for-age z-score categories, by age group (months) and overall <!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// waz_age_group \\


This chunk creates a weighted table of prevalence based on weight-for-age z-scores for age groups and for the overall population.

This happens in three stages: - Table for overall - Table for age groups - Bind the two together as rows ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->

overall <- survey_design %>% 
  ## tabulate multiple variables with same values
  select(all_of(WAZ)) %>% 
  ## only show the row with TRUE
  tbl_svysummary(missing = "no", 
                 value = everything() ~ TRUE)

age_strat <- survey_design %>% 
  ## tabulate multiple variables with same values
  select(all_of(WAZ), age_group) %>% 
  ## only show the row with TRUE
  tbl_svysummary(missing = "no", 
                 value = everything() ~ TRUE, 
                 ## stratify by age group
                 by = age_group)

## combine the overall and stratified tables 
tbl_merge(list(overall, age_strat)) %>% 
  modify_spanning_header(
    list(
      ## rename the spanning header
      ## you can see what the columns are called by putting in an object and inspecting table_body
      stat_0_1    ~ "**Overall**", 
      c(stat_1_2,
        stat_2_2, 
        stat_3_2,
        stat_4_2,
        stat_5_2) ~ "**Age group (months)**")) %>% 
  # change to flextable format
  as_flex_table() %>%
  # make header text bold (using {flextable})
  bold(part = "header") %>% 
  # make your table fit to the maximum width of the word document
  set_table_properties(layout = "autofit")

Weighted prevalence of malnutrition based on weight-for-height z-score categories, by age group (months) and overall <!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /// whz_age_group \\


This chunk creates a weighted table of prevalence based on weight-for-height z-scores for age groups and for the overall population.

This happens in three stages: - Table for overall - Table for age groups - Bind the two together as rows ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->

overall <- survey_design %>% 
  ## tabulate multiple variables with same values
  select(all_of(WHZ)) %>% 
  ## only show the row with TRUE
  tbl_svysummary(missing = "no", 
                 value = everything() ~ TRUE)

age_strat <- survey_design %>% 
  ## tabulate multiple variables with same values
  select(all_of(WHZ), age_group) %>% 
  ## only show the row with TRUE
  tbl_svysummary(missing = "no", 
                 value = everything() ~ TRUE, 
                 ## stratify by age group
                 by = age_group)

## combine the overall and stratified tables 
tbl_merge(list(overall, age_strat)) %>% 
  modify_spanning_header(
    list(
      ## rename the spanning header
      ## you can see what the columns are called by putting in an object and inspecting table_body
      stat_0_1    ~ "**Overall**", 
      c(stat_1_2,
        stat_2_2, 
        stat_3_2,
        stat_4_2,
        stat_5_2) ~ "**Age group (months)**")) %>% 
  # change to flextable format
  as_flex_table() %>%
  # make header text bold (using {flextable})
  bold(part = "header") %>% 
  # make your table fit to the maximum width of the word document
  set_table_properties(layout = "autofit")


R4EPI/r4epi documentation built on Feb. 13, 2023, 3:25 a.m.