You can install bdc from github with:
# Install remotes if not available
if(!"remotes" %in% installed.packages()[,"Package"]) install.packages("remotes")
# Install bdc package from Github
remotes::install_github("RS-eco/bdc", build_vignettes = T)
After installation, simply load the bdc
package:
library(bdc)
If you encounter a bug or if you have any problems, please file an issue on Github.
You can start the bdc Shiny app, by:
library(shiny)
runApp()
Please note: The app currently only supports the alt_bavtk4tel
dataset.
The individual datasets can then be loaded, by:
# Elevation & Terrain (SRTM)
data("alt_bav_tk4tel")
# Outline of Bavaria (GADM)
data("bavaria")
# BayWRF monthly climate data
load(system.file("extdata", "baywrf_pr_bav.rda", package = "bdc"))
load(system.file("extdata", "baywrf_tas_bav.rda", package = "bdc"))
load(system.file("extdata", "baywrf_tasmin_bav.rda", package = "bdc"))
load(system.file("extdata", "baywrf_tasmax_bav.rda", package = "bdc"))
# BioTime data for Germany
data("biotime_deu")
# BirdLife, IUCN and GARD range data
data("amphibians_bav")
data("bird_bav")
data("gard_reptiles_bav")
load(system.file("extdata", "mammals_bav.rda", package = "bdc"))
data("odonata_bav")
data("reptiles_bav")
# Bird range data from the LFU
data("bird_bva_shape") # sf-object
data("bird_bva_shape_tk4tel") #gridded
# Bird and Odonata Atlas data
data("aves_tk4tel")
data("odonata_tk4tel")
# Carbon stock data
data("carbon_bav")
# CCI land cover data
data("cci_bav_tk4tel")
# Chelsa climate data
data("chelsa_bav_tk4tel")
# Euro-cordex climate simulations
data("cordex_bioclim_bav_tk4tel")
data("cordex_bioclim_bav")
load(system.file("extdata", "cordex_prAdjust_bav.rda", package = "bdc"))
load(system.file("extdata", "cordex_tasminAdjust_bav.rda", package = "bdc"))
load(system.file("extdata", "cordex_tasmaxAdjust_bav.rda", package = "bdc"))
#The analysis of all monthly Euro-Cordex climate scenarios can be found here: https://raw.githubusercontent.com/RS-eco/bdc/main/vignettes/bavaria-eurocordex.html
#And the corresponding .Rmd-file is available from here: https://raw.githubusercontent.com/RS-eco/bdc/main/vignettes/bavaria-eurocordex.Rmd
# Corine land-cover and land cover change
data("corine_cha_bav_tk4tel") # Land-cover change
data("corine_cha_bav")
data("corine_cha_perc_bav")
data("corine_lc_bav_tk4tel") # Land cover
data("corine_lc_bav") # Corine Land cover data at 100 x 100 m resolution
data("corine_lc_perc_bav") # Corine land cover percentage data at 1 x 1 km resolution
# Gridded population data for Bavaria at 1km resolution
data("bav_pop_1km")
# Diva shapefiles for Germany
data("diva_cover_deu") # Land-cover data
data("diva_pop_deu") # Population data
data("diva_rails_deu") # Railway tracks
data("diva_roads_deu") # Roads
data("diva_water_areas_deu") # Lakes
data("diva_water_lines_deu") # Rivers
# DWD climate data
data("dwd_annual_ts_bav") # Annual time series data of whole of Bavaria
load(system.file("extdata", "dwd_yearmon_rsms_bav_tk4tel.rda", package = "bdc")) # Gridded monthly climate data
load(system.file("extdata", "dwd_yearmon_tadnmm_bav_tk4tel.rda", package = "bdc"))
load(system.file("extdata", "dwd_yearmon_tadxmm_bav_tk4tel.rda", package = "bdc"))
load(system.file("extdata", "dwd_yearmon_tamm_bav_tk4tel.rda", package = "bdc"))
# E-OBS observed climate data
data("e-obs_elev_ens_0.1deg_bav")
data("e-obs_rr_ens_mean_0.1deg_bav_yearmon")
data("e-obs_rr_ens_spread_0.1deg_bav_yearmon")
data("e-obs_tg_ens_mean_0.1deg_bav_yearmon")
data("e-obs_tg_ens_spread_0.1deg_bav_yearmon")
data("e-obs_tn_ens_mean_0.1deg_bav_yearmon")
data("e-obs_tn_ens_spread_0.1deg_bav_yearmon")
data("e-obs_tx_ens_mean_0.1deg_bav_yearmon")
data("e-obs_tx_ens_spread_0.1deg_bav_yearmon")
# EBCC data of Bavaria
data("ebcc_bav")
# EU-DEM elevation & hillshade data
data("eu_dem_bav_500m")
data("hillshade_bav_500m")
# EuroLST Land surface temperature
data("eurolst_bav_tk4tel")
# EWEMBI daily temperature and precipitation
data("ewembi_bav")
# EWEMBI daily temperature and precipitation data for the whole of Germany can be extracted from the processNC package (https://github.com/RS-eco/processNC)
# List daily temperature files for Germany from 1979 till 2016
ewembi_tas_ger <- list.files(paste0(system.file(package="processNC"), "/extdata"),
pattern="tas.*\\.nc", full.names=T)
# List daily precipitation files for Germany from 1979 till 2016
ewembi_pr_ger <- list.files(paste0(system.file(package="processNC"), "/extdata"),
pattern="tas.*\\.nc", full.names=T)
# Forest disturbance data
data("forest_disturbance_bav_300m")
# GIMMS3g NDVI data
data("gimms3g_v0_bav")
data("gimms3g_v1_bav")
# Globcover land cover
data("globcover_bav_tk4tel")
# Human footprint
data("hfp_1993_v3_bav")
data("hfp_2009_v3_bav")
# Important bird areas
data("iba_bav")
# ISIMIP2b climate and land-use
data("isimip_bio_bav_tk4tel")
data("isimip_lu_bav_tk4tel")
# KK09, KK10 data
data("kk09_bav")
data("kk10_bav")
# Lakes & Rivers
data("lakes_points_bav")
data("lakes_poly_bav")
data("rivers_bav")
# Landsystem data
data("landsystem_bav_tk4tel")
data("landsystem_bav")
data("landsystem_perc_bav_tk4tel")
data("landsystem_perc_bav")
# Merraclim climate
data("merraclim_2.5m_bav_tk4tel")
data("merraclim_5m_bav_tk4tel")
data("merraclim_10m_bav_tk4tel")
# MODIS land-cover
data("modis_lc_bav_tk4tel")
# MODIS Land surface temperature
data("modis_lst_bav_tk4tel")
# Naturraeume (from large to small)
data("ng_geo")
data("ng_gross")
data("ng_ssymank")
data("ng_meynen_schmit")
data("ng_unter_absp")
data("ng_abspziele")
# Protected areas
data("dist_pa_bav_tk4tel")
load(system.file("extdata", "pa_bav.rda", package = "bdc"))
data("pa_bav_tk4tel")
# Plot coordinates
data("plot_coords_bav")
# Potential natural vegetation
data("pnv_bav")
# Predicts data
data("predicts_deu")
# Standardized taxonomy
data("taxonomyStd")
# Tandem-X Forest/Non-forest
data("tdm_fnf_bav")
# TK25 grid
data("tk4tel_db")
data("tk4tel_grid")
data("tk25_grid")
# Worldclim v1.4
data("wc1.4_10m_bav_tk4tel")
data("wc1.4_2.5m_bav_tk4tel")
data("wc1.4_30s_bav_tk4tel")
data("wc1.4_5m_bav_tk4tel")
# Worldclim v2.0
data("wc2.0_10m_bav_tk4tel")
data("wc2.0_2.5m_bav_tk4tel")
data("wc2.0_30s_bav_tk4tel")
data("wc2.0_5m_bav_tk4tel")
# WFDE5 re-analysis climate data (0.5°)
data("wfde5_rainf_bav")
data("wfde5_snowf_bav")
data("wfde5_tair_bav")
Note: The code of how the datasets were created can be found in the data-raw folder.
Note: Climate, land-use and species data for the whole of Europe can be found in the edc package.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.