knitr::opts_chunk$set(collapse = TRUE, warning=F, message=F, fig.width=8, fig.height=6)
rm(list=ls()); gc() # Load packages library(dplyr); library(tidyr) library(ggplot2); library(scico) # Load edc package library(sdc) # Load shapefile of Switzerland data("che", package="sdc")
# Install mecofun package if not available if(!"mecofun" %in% installed.packages()[,"Package"]){ remotes::install_git("https://gitup.uni-potsdam.de/macroecology/mecofun.git") } # Load mecofun package library(mecofun) #' This package includes the following functions: #' predictSDM, crossvalSDM, evalSDM, TSS, expl_deviance, inflated_response #' eo_mask, partial_response, range_size, range_centre, select07, select07_cv
# Load species data from iNaturalist data data("inat_che_1965_2021") # Get occurrence records from Phylloscopus bonelli turd_torq <- inat_che_1965_2021 %>% filter(scientific_name == "Turdus torquatus") rm(inat_che_1965_2021); gc() # Load climate data data("cordex_bioclim_che") # Select for current conditions & calculate ensemble mean curclim <- cordex_bioclim_che %>% filter(time_frame == "1991-2020") %>% group_by(x,y) %>% summarise_at(vars(bio1:bio19), ~mean(.,na.rm=T)) # Add landcover data to curclim data("corine_lc_che") corine_lc_che <- corine_lc_che %>% group_by(x,y) %>% pivot_longer(cols=!c("x","y"), names_to = "year", values_to="clc"); gc() corine_lc_che$present <- 1 corine_lc_che$year <- as.numeric(corine_lc_che$year) corine_lc_che <- corine_lc_che %>% filter(year == 2018) %>% dplyr::select(-year) %>% pivot_wider(names_from="clc", values_from="present", values_fill = 0); gc() curclim <- raster::rasterFromXYZ(curclim, crs="+init=EPSG:4326"); gc() clc_names <- colnames(corine_lc_che)[3:ncol(corine_lc_che)] corine_lc_che <- raster::rasterFromXYZ(corine_lc_che, crs="+proj=laea +lat_0=52 +lon_0=10 +x_0=4321000 +y_0=3210000 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"); gc() names(corine_lc_che) <- clc_names corine_lc_che <- raster::projectRaster(corine_lc_che, crs="+init=EPSG:4326") corine_lc_che <- raster::resample(corine_lc_che, curclim); gc() corine_lc_che[] <- round(corine_lc_che) curenv <- raster::stack(curclim, corine_lc_che) %>% raster::rasterToPoints() %>% as.data.frame() %>% mutate_at(vars(-c(x,y)), replace_na, 0); rm(curclim, corine_lc_che) # Select for future conditions and calculate ensemble mean across GCMs futclim <- cordex_bioclim_che %>% filter(time_frame != "1991-2020") %>% group_by(x,y,time_frame, rcp) %>% summarise_at(vars(bio1:bio19), ~mean(.,na.rm=T)) rm(cordex_bioclim_che); gc()
# plot species using ggplot turd_torq %>% ggplot() + geom_point(aes(x=longitude, y=latitude, color=`scientific_name`), shape=15, size=2) + scale_color_manual(values=c("grey80", "blue")) + geom_sf(data=che, fill=NA) + coord_sf() + theme_bw() + labs(x="", y="") + ggtitle("Turdus torquatus current range") + theme(legend.position = "none") # plot environmental variables #define two colour scales for annual mean temperature and annual precipitation tempcol <- scale_fill_scico(name = "°C", palette="roma", direction=-1, limits = c(min(curenv$bio1),max(futclim$bio1))) preccol <- scale_fill_scico(name = "mm", palette="roma", limits = c(min(curenv$bio12),max(futclim$bio12))) curenv %>% # which dataset to use ggplot() + # start plotting # type of plot, define x and y axis, define fill the environmental variable geom_tile(aes(x=x, y=y, fill=bio1)) + scale_fill_scico(name="°C", palette="roma", direction=-1) + coord_sf() + theme_bw() + labs(x="", y="") + # set x/y to equal, use custom map-theme ggtitle("Annual Mean Temperature") + # set plot title theme(legend.text = element_text(size=10)) # set font size for the legend #different colour scales (see above): #bio1: annual mean temperature curenv %>% ggplot() + geom_tile(aes(x=x, y=y, fill=bio1)) + tempcol + coord_sf() + theme_bw() + labs(x="", y="") + ggtitle("Annual Mean Temperature") + theme(legend.position = "right", panel.background = element_rect(fill="transparent"), plot.background = element_rect(fill="transparent")) #bio12: annual precipitation curenv %>% ggplot() + geom_tile(aes(x=x, y=y, fill=bio12)) + preccol + coord_sf() + theme_bw() + labs(x="", y="") + ggtitle("Annual Precipitation") + theme(legend.position = "right", panel.background = element_rect(fill="transparent"), plot.background = element_rect(fill="transparent")) #bio1 futclim %>% filter(time_frame == "2041-2070", rcp == "rcp26") %>% ggplot() + geom_tile(aes(x=x, y=y, fill=bio1)) + tempcol + coord_sf() + theme_bw() + labs(x="", y="") + ggtitle("Annual Mean Temperature RCP2.6, 2055") + theme(legend.position = "none", panel.background = element_rect(fill="transparent"), plot.background = element_rect(fill="transparent")) #bio12 futclim %>% filter(time_frame == "2041-2070", rcp == "rcp26") %>% ggplot() + geom_tile(aes(x=x, y=y, fill=bio12)) + preccol + coord_sf() + theme_bw() + labs(x="", y="") + ggtitle("Annual Precipitation RCP2.6, 2055") + theme(legend.position = "none", panel.background = element_rect(fill="transparent"), plot.background = element_rect(fill="transparent"))
# Create presence-absence data.frame turd_torq <- letsR::lets.presab.points(xy=turd_torq[,c("longitude", "latitude")], species=turd_torq$scientific_name, xmn=min(turd_torq$longitude), xmx=max(turd_torq$longitude), ymn=min(turd_torq$latitude), ymx=max(turd_torq$latitude), resol=0.11, remove.cells=F, show.matrix = T) turd_torq <- as.data.frame(turd_torq) turd_torq <- turd_torq %>% replace_na(list(`Turdus torquatus` = 0)) curenv_r <- raster::rasterFromXYZ(curenv) #turn climate data into raster turd_torq_r <- raster::rasterFromXYZ(turd_torq) #turn species data (here: odonata) into raster turd_torq_r <- raster::mask(raster::resample(turd_torq_r, curenv_r), curenv_r[[1]]) turd_torq_r[turd_torq_r > 0] <- 1 #raster::plot(turd_torq_r) spec_env <- raster::stack(turd_torq_r, curenv_r) #combine Numenius.arquata and climate raster spec_env <- as.data.frame(raster::rasterToPoints(spec_env)) %>% drop_na() # 2 explanatory variables: myExpl2 <- c("bio1", "bio12") # Automatically create model formula from variables (formExpl2 <- as.formula(paste("Turdus.torquatus ~ ", paste(myExpl2, collapse="+"),sep = ""))) # Fit Generalized Linear Model (GLM) in the simplest form glm_2 <- glm(formExpl2, family='binomial', data=spec_env) # You would need to specify polynomials and interactions manually in the formula: # Fit Generalized Linear Model (GLM) in a bit more complex form (with polynomials) glm_2_Pol <- glm(Turdus.torquatus ~ bio1 + I(bio1^2) + bio12 + I(bio12^2), family='binomial', data=spec_env) # Fit Generalized Linear Model (GLM) in an even more complex form (with polynomials and interactions) glm_2_PolInt <- glm(Turdus.torquatus ~ bio1 + I(bio1^2) + bio12 + I(bio12^2) + bio1*bio12, family='binomial', data=spec_env) # check model summary ---- (sum_glm_2 <- summary(glm_2)) (sum_glm_2_PolInt <- summary(glm_2_PolInt)) (sum_glm_2_Pol <- summary(glm_2_Pol))
# basic plots of occurrence vs. explanatory variable par(mfrow=c(2,1)) plot(spec_env$bio1, spec_env$Turdus.torquatus, ylab="", xlab="bio1") plot(spec_env$bio12, spec_env$Turdus.torquatus, ylab="", xlab="bio12") # check partial response curves par(mfrow=c(3,2)) partial_response(glm_2, predictors = spec_env[,myExpl2]) partial_response(glm_2_Pol, predictors = spec_env[,myExpl2]) partial_response(glm_2_PolInt, predictors = spec_env[,myExpl2]) #' This is needed for getting TSS, AUC and Kappa values # Make cross-validated predictions for GLM: crosspred_glm_2 <- crossvalSDM(glm_2, kfold=5, traindat= spec_env, colname_pred=myExpl2, colname_species = "Turdus.torquatus") crosspred_glm_2_Pol <- crossvalSDM(glm_2_Pol, kfold=5, traindat= spec_env, colname_pred=myExpl2, colname_species = "Turdus.torquatus") # Assess cross-validated model performance (eval_glm_2 <- evalSDM(observation = spec_env$Turdus.torquatus, predictions = crosspred_glm_2)) (eval_glm_2_Pol <- evalSDM(observation = spec_env$Turdus.torquatus, predictions = crosspred_glm_2_Pol)) # check variable importances (glm_imp <- caret::varImp(glm_2, scale=T)) par(mfrow=c(1,1)) barplot((glm_imp$Overall/sum(glm_imp$Overall)*100)[2:1], names.arg=rownames(glm_imp)[2:1], horiz=T, main="GLM", xlab="Relative influence")
# Make predictions to current climate: spec_env$pred_glm_2 <- predictSDM(glm_2, spec_env) # Make binary/threshholded predictions: spec_env$bin_glm_2 <- ifelse(spec_env$pred_glm_2 > eval_glm_2$thresh, 1, 0) par(mfrow=c(1,1), mar=c(5,5,4,1)) boxplot(spec_env$pred_glm_2 ~ spec_env$Turdus.torquatus, las=1, xlab="Aktuelle Verbreitung", ylab="Vorkommenswahrscheinlichkeit", cex.lab=2, col="dodgerblue4", cex.axis=1.5, main="GLM-Modell mit 2 Klimavariablen", cex.main=2) #--------------------------------------------------- #' ## plot species using ggplot #--------------------------------------------------- # plot histogramm spec_env %>% ggplot() + geom_histogram(aes(x=pred_glm_2), col="grey0", alpha=0.2) + labs(y="Number of grid cells", x="Occurrence probability") + geom_hline(yintercept = 0, linetype="dashed", color="darkgrey") + theme_classic() # plot maps # probability map (plot_curclim_GLM <- spec_env %>% ggplot() + geom_tile(aes(x=x, y=y, fill=pred_glm_2)) + scale_fill_scico(name="Probability of\noccurrence", palette="roma", direction=-1) + coord_sf() + theme_bw() + labs(x="", y="") + ggtitle("GLM current climate") + theme(legend.text = element_text(size=10))) # binary map (plot_curclim_GLM_bin <- spec_env %>% ggplot() + geom_tile(aes(x=x, y=y, fill=as.factor(bin_glm_2))) + scale_fill_manual(name="Occurrence", values=c("grey80", "blue")) + coord_sf() + theme_bw() + labs(x="", y="") + ggtitle("GLM current climate") + theme(legend.text = element_text(size=10)))
# Assess novel environments in future climate layer: # Values of 1 in the eo.mask will indicate novel environmental conditions futclim$eo_mask <- eo_mask(curenv[,myExpl2],futclim[,myExpl2]) futclim %>% # which dataset to use ggplot() + # start plotting # type of plot, define x axis, y axis is automatically a count, define color and transparency geom_tile(aes(x=x, y=y, fill=as.factor(eo_mask))) + scale_fill_manual(name="", values=c("grey80", "blue")) + coord_sf() + theme_bw() + labs(x="", y="") + # set x/y to equal, use custom map-theme ggtitle("Environmental novelty") + # set plot title theme(legend.text = element_text(size=10)) # set font size for the legend # Make predictions to futclim futclim$pred_glm_2 <- predictSDM(glm_2, futclim) # Make binary/threshholded predictions: futclim$bin_glm_2 <- ifelse(futclim$pred_glm_2 > eval_glm_2$thresh, 1, 0) # => using this framework you can proceed with other future climate data #--------------------------------------------------- # plot species using ggplot #--------------------------------------------------- # plot histogramm futclim %>% # which dataset to use ggplot() + # start plotting # type of plot, define x axis, y axis is automatically a count, define color and transparency geom_histogram(aes(x=pred_glm_2), col="grey0", alpha=0.2) + labs(y="Number of grid cells", x="Occurrence probability", # add axis labels title="Distribution of Turdus.torquatus occurrence probability under CC2670 GLM") + geom_hline(yintercept = 0, linetype="dashed", color="darkgrey") + # add a horizontal line theme_classic() # plot maps # probability map (plot_CC6070_GLM <- futclim %>% # which dataset to use ggplot() + geom_tile(aes(x=x, y=y, fill=pred_glm_2)) + scale_fill_scico(name="Probability of\noccurrence", palette = "roma", direction=-1) + coord_sf() + theme_bw() + labs(x="", y="") + ggtitle("GLM CC6070") + # set plot title theme(legend.text = element_text(size=10))) # set font size for the legend # binary map (plot_CC6070_GLM_bin <- futclim %>% # which dataset to use ggplot() + geom_tile(aes(x=x, y=y, fill=as.factor(bin_glm_2))) + scale_fill_manual(name="Occurrence", values=c("grey80", "blue")) + coord_sf() + theme_bw() + labs(x="", y="") + ggtitle("GLM CC6070") + # set plot title theme(legend.text = element_text(size=10))) # set font size for the legend rm(list=ls()); invisible(gc())
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.