Description Usage Arguments Details Value See Also Examples
get_models()
recursively estimates time-series models by using rolling and expanding time windows.
1 2 3 4 5 6 7 | get_models(.tbl, .group, .col, .initial, .assess, .cumulative, .fun, ...)
## Default S3 method:
get_models(.tbl, .group, .col, .initial, .assess, .cumulative, .fun, ...)
## S3 method for class 'tbl_df'
get_models(.tbl, .group, .col, .initial, .assess, .cumulative, .fun, ...)
|
.tbl |
A tidy |
.group |
The column in which the data should be grouped. This will often be a column with stock tickers or stocks names. |
.col |
The reference column in which the operations should be based on. |
.initial |
The number of periods used to train the model in each split. |
.assess |
The forecast horizon. |
.cumulative |
If |
.fun |
Currently supports only a forecasting function from the |
... |
Additional parameters to be passed to |
Under the hood, get_forecasts uses rsample
infrastructure to sequentially access the model passed to .fun
. The data y1, y2, ..., yt is fitted and the process repeats itself for each stock in the .group
column.
A tidy tibble
contaning the following in-sample statistics for each period:
term: The parameters estimated by .fun
estimate: The values of the estimated parameters
model.desc: A description of the model including the three integer components (p, d, q) are the AR order, the degree of differencing, and the MA order.
sigma: The square root of the estimated residual variance
logLik: The data's log-likelihood under the model
AIC: The Akaike Information Criterion
BIC: The Bayesian Information Criterion
ME: Mean error
RMSE: Root mean squared error
MAE: Mean absolute error
MPE: Mean percentage error
MAPE: Mean absolute percentage error
MASE: Mean absolute scaled error
ACF1: Autocorrelation of errors at lag 1
sw_tidy() sw_glance() rolling_origin() forecast
1 2 3 4 5 6 7 8 9 10 11 12 | library(YahooTickers)
library(dplyr)
library(forecast)
# Download and forecast time series using the "auto.arima" function
# from the forecast package
get_tickers(dow) %>%
slice(1:2) %>%
get_stocks(., periodicity = "monthly") %>%
get_returns(., tickers, arithmetic, TRUE, ret_adj = adjusted) %>%
get_models(., tickers, ret_adj, 60, 1, FALSE, auto.arima,
seasonal = FALSE, stationary = TRUE,
max.p = 1, max.q = 1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.