#' MSE error
#' @description Compute cost function for clusterwise lmm that is the mean squared error between
#' the prediction and the target variable
#'
#' @param prediction vector containing the response of the clusterwise lmm to the data.
#' @param target vector containing the target variable.
#' @param residuals logical; if TRUE, returns the squared of residuals instead of the MSE
#'
#' @return mean squared error between prediction and target
#'
mse <- function(prediction, target, residuals = FALSE) {
if(length(prediction)==1) {
if(is.infinite(prediction))
return(Inf)
}
if (length(prediction) != length(target)) {
stop("prediction and target must have the same length")
}
if (residuals) {
errors = (prediction - target) ^ 2
}
else{
errors = mean((prediction - target) ^ 2)
}
return(errors)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.