#' Predict an optimal clustering
#'
#' @description Compute and return an optimal clustering that minimize the MSE error given K lmm models.
#'
#' @param data data frame containing the variables in which the clmm model has been trained.
#' @param target vector containing the target variable.
#' @param models object of class clmm that contains a list of k lmm models.
#'
#' @return vector containing the optimal clustering.
#'
#' @importFrom ramify argmin
#' @importFrom stats predict
predict_cluster <- function(data, target, models) {
if (class(models) != "clmm")
stop("models must be of class clmm")
predictions = mse(predict(models[[1]],
newdata = data,
allow.new.levels = TRUE),
target,
residuals = TRUE)
for (i in 2:length(models)) {
predictions = cbind(predictions,
mse(
predict(models[[i]],
newdata = data,
allow.new.levels = TRUE),
target,
residuals = TRUE
))
}
clustering = argmin(predictions)
return(clustering)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.