run_maxent | R Documentation |
Run maxEnt model
run_maxent( presence.bg, with_raster = F, algorithm = "maxnet", factors = NULL, predictors = NULL, covars = NULL, partition_type = "crossvalidation", nfolds = 5, orientation_block = "lat_lon", fc = "L", rm = 1, parallel = T, updateProgress = T, parallelType = "doParallel" )
presence.bg |
data frame, containing presence/background, output of setup_sdm_data |
with_raster |
boolean, if F presence.bg must contain the predictors values. |
algorithm |
string, "maxnet" or "maxent.jar" |
factors |
character vector, name or names of categorical environmental variables. |
predictors |
spatRaster, environmental predictor variables. Used if with_raster = T. |
covars |
character vector, if with_raster = F, list of predictors variables (must match columns names in presence.bg) |
partition_type |
string, name of partitioning technique: "randomkfold","jackknife","block", "checkerboard1", "checkerboard2", and "none" |
nfolds |
int, number of folds (for "randomkfold" method) |
orientation_block |
string, one of "lat_lon" (default), "lon_lat", "lat_lat", or "lon_lon" |
fc |
vector of strings, feature classes to test, e.g. c("L", "LQ") |
rm |
vector of float, regularisation multiplier values to test, e.g. c(1,2,3) |
parallel |
boolean, if TRUE, run with parallel processing. |
updateProgress |
boolean, if TRUE, use shiny progress bar. This is only for use in shiny apps. |
parallelType |
character, either "doParallel" or "doSNOW" (default: "doSNOW") . |
spatial points
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.