run_maxent: Run maxEnt model

View source: R/run_maxent.R

run_maxentR Documentation

Run maxEnt model

Description

Run maxEnt model

Usage

run_maxent(
  presence.bg,
  with_raster = F,
  algorithm = "maxnet",
  factors = NULL,
  predictors = NULL,
  covars = NULL,
  partition_type = "crossvalidation",
  nfolds = 5,
  orientation_block = "lat_lon",
  fc = "L",
  rm = 1,
  parallel = T,
  updateProgress = T,
  parallelType = "doParallel"
)

Arguments

presence.bg

data frame, containing presence/background, output of setup_sdm_data

with_raster

boolean, if F presence.bg must contain the predictors values.

algorithm

string, "maxnet" or "maxent.jar"

factors

character vector, name or names of categorical environmental variables.

predictors

spatRaster, environmental predictor variables. Used if with_raster = T.

covars

character vector, if with_raster = F, list of predictors variables (must match columns names in presence.bg)

partition_type

string, name of partitioning technique: "randomkfold","jackknife","block", "checkerboard1", "checkerboard2", and "none"

nfolds

int, number of folds (for "randomkfold" method)

orientation_block

string, one of "lat_lon" (default), "lon_lat", "lat_lat", or "lon_lon"

fc

vector of strings, feature classes to test, e.g. c("L", "LQ")

rm

vector of float, regularisation multiplier values to test, e.g. c(1,2,3)

parallel

boolean, if TRUE, run with parallel processing.

updateProgress

boolean, if TRUE, use shiny progress bar. This is only for use in shiny apps.

parallelType

character, either "doParallel" or "doSNOW" (default: "doSNOW") .

Value

spatial points


ReseauBiodiversiteQuebec/sdm-pipeline documentation built on June 23, 2022, 9:10 p.m.