relimp | R Documentation |
The function relimp
uses Dominance Analysis (DA) to rank
order the variables in a linear or logistic regression in terms
of relative importance.
relimp(x)
x |
an object of class |
The function is a wrapper for the dominanceAnalysis
function in the dominanceanalyis
package. For linear regression
DA analysis uses change in R-squared to assess the average contribution of
each variable to the set all 1, 2, 3, ..., p variable models. For logistic
regression, Estrella's Pseudo R-squared is used (see references).
Results are graphed as horizontal dot plots.
a ggplot2 graph
Estrella, A. (1998). A new measure of fit for equations with dichotomous dependent variables. Journal of Business & Economic Statistics, 16(2), 198-205.
Azen, R., & Budescu, D. V. (2003). The dominance analysis approach for comparing predictors in multiple regression. Psychological Methods, 8(2), 129-148.
Azen, R., & Traxel, N. (2009). Using Dominance Analysis to Determine Predictor Importance in Logistic Regression. Journal of Educational and Behavioral Statistics, 34(3), 319-347.
dominanceAnalysis
data(mtcars) ####################### # Multiple regression # ####################### fit <- lm(mpg ~ ., data = auto_mpg) relimp(fit) ####################### # Logistic regression # ####################### fit2 <- glm(caesarian ~ ., family = binomial, data = caesarian) relimp(fit2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.