knitr::opts_chunk$set(echo = TRUE)

Introduction

Here we consider different observations deriving from order statistics among three competitors. It is not particularly well structured, it is just a place to keep a record of thoughts. I consider the most general case first and then go on to consider more special cases. In the interests of simplicity I will often identify a runner with his strength, so that $a$ represents a particular competitor, and also his Plackett-Luce strength.

General three runner order statistic.

We consider three runners, $a,b,c$ and a Plackett-Luce likelihood function for the six possible orders. We normalize so $a+b+c=1$ and take $c=1-a-b$.

$a\succ b\succ c$

prob = $\frac{ab}{1-a}$

$S=\log a+\log b-\log(1-a)$

$\partial S/\partial a = a^{-1} + (1-a)^{-1}$

$\partial S/\partial b=b^{-1}$

$\partial^2 S/\partial a^2=-a^{-2} +(1-a)^{-2}\longrightarrow -pS_{aa}=\frac{(1-2a)b}{a(1-a)^3}$

$\partial^2 S/\partial b^2 = -b^{-2}\longrightarrow -pS_{bb} = \frac{a}{(1-a)b}$

$\partial^2 S/\partial a\partial b=0\longrightarrow -pS_{ab}= 0$

$a\succ c\succ b$

prob = $\frac{a(1-a-b)}{1-a}$

$S=\log a-\log(1-a) +\log(1-a-b)$

$\partial S/\partial a = a^{-1} + (1-a)^{-1} + (1-a-b)^{-1}$

$\partial S/\partial b = (1-a-b)^{-1}$

$\partial^2S/\partial a^2 = -a^{-2}+(1-a)^{-2} + (1-a-b)^{-2}\longrightarrow -pS_{aa} =\frac{(1-2a)(1-a-b)}{a(1-a)^3} -\frac{a}{1-a}=\frac{(1-2a)(1-a-b) - a^2(1-a)^2}{a(1-a)^3}$

$\partial^2S/\partial b^2=-(1-a-b)^{-2}\longrightarrow -pS_{bb}=\frac{a}{(1-a)(1-a-b)}$

$\partial^2S/\partial a\partial b = (1-a-b)^{-2}\longrightarrow -pS_{ab}=\frac{-a}{(1-a)(1-a-b)}$

$b\succ a\succ c$

prob = $\frac{ba}{1-b}$

$S=\log a +\log b-\log(1-b)$

$\partial S/\partial a = a^{-1}$

$\partial S/\partial b = b^{-1} +(1-b)^{-1}$

$\partial^2S/\partial a^2 = -a^{-2}\longrightarrow -pS_{aa}=\frac{-b}{a(1-b)}$

$\partial^2S/\partial b^2=-b^{-2} +(1-b)^{-2}\longrightarrow -pS_{bb}=\frac{ab(-1+2b)}{b^2(1-b)^3}$

$\partial^2S/\partial a\partial b=0\longrightarrow -pS_{ab}=0$

$b\succ c\succ a$

prob = $\frac{a(1-a-b)}{1-b}$

$S=\log a + \log(1-a-b) - \log(1-b)$

$\partial S/\partial a=a^{-1} -(1-a-b)^{-1}$

$\partial S/\partial b=-(1-a-b)^{-1} - (1-b)^{-1}$

$\partial^2S\partial a^2=-a^{-2} -(1-a-b)^{-2}\longrightarrow -pS_{aa}= \frac{a^4 + 4 a^3 b + 6 a^2 b^2 - 4 a^2 b + 4 a b^3 - 6 a b^2 + 2 a b + b^4 - 2 b^3 + b^2 }{a^2 (a + b - 1)^2 (a + b)^2}$

$\partial^2S/\partial b^2 =-(1-a-b)^{-2} -(1-b)^{-2}$

$\partial^2S/\partial a\partial b=-(1-a-b)^{-2}$

$c\succ a\succ b$

prob=$\frac{a(1-a-b)}{a+b}$

$S=\log a + \log(1-a-b) -\log(a+b)$

$\partial S/\partial a=a^{-1} -(1-a-b)^{-1} -(a+b)^{-1}$

$\partial S/\partial b=-(1-a-b)^{-1}-(a+b)^{-1}$

$\partial^2S/\partial a^2=-a^{-2} -(1-a-b)^{-2} +(a+b)^{-2}$

$\partial^2S/\partial b^2=-(1-a-b)^{-2} +(a+b)^{-2}$

$\partial^2S/\partial a\partial b=-(1-a-b)^{-2}+(a+b)^{-2}$

$c\succ b\succ a$

prob=$\frac{b(1-a-b)}{1-b}$

$S=\log b+\log(1-a-b) -\log(1-b)$

$\partial S/\partial a=-(1-a-b)^{-1}$

$\partial S/\partial b=b^{-1}+(1-b)^{-1} -(1-a-b)^{-1}$

$\partial^2S/\partial a^2=-(1-a-b)^{-2}$

$\partial^2S/\partial b^2=-b^{-2} +(1-b)^{-2}-(1-a-b)^{-2}$

$\partial^2S/\partial a\partial b=-(1-a-b)^{-2}$

We want to consider the maximum likelihood estimator. Take the six possible observations in turn:

$o=a\succ b\succ c\longrightarrow P(o)=\frac{ab}{1-a};\hat{a}=1,\hat{b}=0$

$o=a\succ c\succ b\longrightarrow P(o)=\frac{a(1-a-b)}{1-a};\hat{a}=1,\hat{b}=0$.

$o=b\succ a\succ c\longrightarrow P(o)=\frac{ab}{1-b};\hat{a}=0,\hat{b}=1$.

$o=b\succ c\succ a\longrightarrow P(o)=\frac{b(1-a-b)}{1-b};\hat{a}=0,\hat{b}=1$.

$o=c\succ a\succ b\longrightarrow P(o)=\frac{a(1-a-b)}{1-b};\hat{a}=0,\hat{b}=0$.

$o=c\succ b\succ a\longrightarrow P(o)=\frac{a(1-a-b)}{1-b};\hat{a}=0,\hat{b}=0$.

So we see that $\mathbb{E}(\hat{a})=\frac{ab}{1-a}+\frac{a(1-a-b)}{1-a}=a$ and $\mathbb{E}(\hat{b})=\frac{ab}{1-b}+\frac{b(1-a-b)}{1-b}=b$, so the maximum likelihood estimator is unbiased [NB $\mathbb{E}(\hat{c})=c$].

For mean squared error we seek $\mathbb{E}\left| (a,b)-(\hat{a},\hat{b})\right|^2=\mathbb{E}\left[(a-\hat{a})^2 + (b-\hat{b})^2\right]= \mathbb{E}\hat{a}^2 +\mathbb{E}\hat{b}^2-a^2-b^2=a(1-a)+b(1-b)$ [because $\mathbb{E}\hat{a}^2=a$ and $\mathbb{E}\hat{b}^2=b$].

Alternatively, we might define the mean squared error to be $\mathbb{E}\left| (a,b,c)-(\hat{a},\hat{b},\hat{c})\right|^2$ and get $a(1-a)+b(1-b)+c(1-c)$ or $2a(1-a)+2b(1-b)-2ab$.

For the Fisher information matrix, we seek $M$, the two-by-two matrix with entries $\sum_{\sigma\in\left\lbrace a\succ b\succ c,\ldots, c\succ b\succ a\right\rbrace}\operatorname{Prob}(\sigma)\frac{\partial^2\log\operatorname{Prob}(\sigma)}{\partial x\partial y}$, where $x,y\in\left\lbrace a,b\right\rbrace$. Then the Fisher information is $\det(M)$. The whole thing is a bit of a nightmare algebraically but we can use mathematica to help.

p1 = a*b/(1-a)
p2 = a*(1-a-b)/(1-a)
p3 = a*b/(1-b)
p4 = b*(1-a-b)/(1-b)
p5 = a*(1-a-b)/(a+b)
p6 = b*(1-a-b)/(a+b)

Faa = (
    -p1*D[Log[p1],a,a]
    -p2*D[Log[p2],a,a]
    -p3*D[Log[p3],a,a]
    -p4*D[Log[p4],a,a]
    -p5*D[Log[p5],a,a]
    -p6*D[Log[p6],a,a]
)

Fab = (
    -p1*D[Log[p1],a,b]
    -p2*D[Log[p2],a,b]
    -p3*D[Log[p3],a,b]
    -p4*D[Log[p4],a,b]
    -p5*D[Log[p5],a,b]
    -p6*D[Log[p6],a,b]
)

Fba = (
    -p1*D[Log[p1],b,a]
    -p2*D[Log[p2],b,a]
    -p3*D[Log[p3],b,a]
    -p4*D[Log[p4],b,a]
    -p5*D[Log[p5],b,a]
    -p6*D[Log[p6],b,a]
)

Fbb = (
    -p1*D[Log[p1],b,b]
    -p2*D[Log[p2],b,b]
    -p3*D[Log[p3],b,b]
    -p4*D[Log[p4],b,b]
    -p5*D[Log[p5],b,b]
    -p6*D[Log[p6],b,b]
)

Minimize[{Faa*Fbb-Fab*Fba,a>0,b>0,a+b<1},{a,b}]

gives 1323/16.

The loser

Now consider the same situation but our observation is purely the loser in a race. With $a,b,c, a+b+c=1$ or $c=1-a-b$ we have the probabilities of:

A loses: either $b\succ c\succ a$ or $c\succ b\succ a$:

$$\frac{b}{a+b+c}\cdot\frac{c}{a+c}+\frac{c}{a+b+c}\cdot\frac{b}{a+b}= bc\left(\frac{1}{1-b}+\frac{1}{1-c}\right) $$

B loses: either $a\succ c\succ b$ or $c\succ a\succ c$:

$$\frac{a}{a+b+c}\cdot\frac{c}{b+c}+\frac{c}{a+b+c}\cdot\frac{a}{a+b}= ac\left(\frac{1}{1-a}+\frac{1}{1-c}\right) =ac\left(\frac{1}{1-a}+\frac{1}{1-c}\right) $$

C loses: either $a\succ b\succ c$ or $b\succ a\succ c$, mutually exclusive, probabilities add:

$$\frac{a}{a+b+c}\cdot\frac{b}{b+c}+\frac{b}{a+b+c}\cdot\frac{a}{a+c}= ab\left(\frac{1}{1-a}+\frac{1}{1-b}\right)$$

Interestingly, there is no well-defined maximum likelihood estimator from this data. The likelihood functions for the three observations do not have a well-defined maximum. If we try to find a symmetric estimator, specifically one in which

then there is no unbiased estimator: there is no value of $\alpha$ for which $\mathbb{E}\left(\hat{a},\hat{b},\hat{c}\right)=(a,b,c)$. I think that's quite interesting. How about minimizing the MSE? Defined as $\mathbb{E}\left| (a,b)-(\hat{a},\hat{b})\right|^2$, we are minimizing

$$ P(A \mbox{ loses})\cdot((a-0)^2 +(b-\alpha)^2) + P(B \mbox{ loses})\cdot((a-\alpha)^2 +(b-0)^2) + P(C \mbox{ loses})\cdot((a-\alpha)^2 +(b-\alpha)^2) $$

$$ = b(1-a-b)\left(\frac{1}{1-b}+\frac{1}{a+b}\right)\cdot(a^2+(b-\alpha)^2)+ a(1-a-b)\left(\frac{1}{1-a}+\frac{1}{a+b}\right)\cdot((a-\alpha)^2+b^2) + ab \left(\frac{1}{1-a}+\frac{1}{1-b}\right)\cdot((a-\alpha)^2+(b-\alpha)^2 $$

Or, using the other definition [where $c=1-a-b$]

$$ P(A \mbox{ loses})\cdot((a-0)^2 +(b-\alpha)^2 + (c-\alpha)^2)) + P(B \mbox{ loses})\cdot((a-\alpha)^2 +(b-0)^2 + (c-\alpha)^2)) + P(C \mbox{ loses})\cdot((a-\alpha)^2 +(b-\alpha)^2 + c^2) $$

but neither of these has a minimum independent of $a,b,c$. For the Fisher information, from mathematica:

c = 1-a-b
pc =  a*b*(1/(1-a) + 1/(1-b))
pb =  a*c*(1/(1-a) + 1/(1-c))
pa =  b*c*(1/(1-b) + 1/(1-c))



Flaa = (
    -pa*D[Log[pa],a,a]
    -pb*D[Log[pb],a,a]
    -pc*D[Log[pc],a,a]
)

Flab = (
    -pa*D[Log[pa],a,b]
    -pb*D[Log[pb],a,b]
    -pc*D[Log[pc],a,b]
)

Flba = (
    -pa*D[Log[pa],b,a]
    -pb*D[Log[pb],b,a]
    -pc*D[Log[pc],b,a]
)

Flbb = (
    -pa*D[Log[pa],b,b]
    -pb*D[Log[pb],b,b]
    -pc*D[Log[pc],b,b]
)



Minimize[{Faa*Fbb-Fab*Fba,a>0,b>0,a+b<1},{a,b}]

This gives $\frac{16875}{265}\simeq 65.918$.

Two pairs of twins, two finishers and two nonfinishers

There are four possible outcomes:

$a\succ b\succ\left\lbrace a,b\right\rbrace$

$b\succ a\succ\left\lbrace a,b\right\rbrace$

$a\succ a\succ\left\lbrace b,b\right\rbrace$

$b\succ b\succ\left\lbrace a,a\right\rbrace$.

Call these S1, S2, S3 and S4 respectively. Mathematica code:

S1 = a*(1-a)/(2-a)*2
S2 = a*(1-a)/(1+a)*2
S3 = a^2/(2-a)
S4 = (1-a)^2/(1+a)


FI = 
-(
S1*D[Log[S1],a,a]+
S2*D[Log[S2],a,a]+
S3*D[Log[S3],a,a]+
S4*D[Log[S4],a,a]
)//FullSimplify


Minimize[{FI,a>0,a<1},{a}]

We get 68/9 at $a=1/2$. In more detail we have

FI <- function(a){ (12 + (1-a)* a* ((1-a)*a-10)) / ((2-a)^2*(1-a)*a*(1+a)^2)}
p <- seq(from=0.1,to=0.90,len=40)
plot(p,FI(p))


RobinHankin/hyper2 documentation built on April 21, 2024, 11:38 a.m.