knitr::opts_chunk$set(echo = TRUE)
We can set up an ersatz Jordan algebra as follows:
library(jordan) `%o%` <- function(x,y){(x%*%y + y%*%x)/2} ji <- function(x,y){ # ji == Jordan Identity; if satisfied exactly, return 0 max(Mod((x%o%y)%o%(x%o%x) - x%o%(y%o%(x%o%x)))) } X <- cprod(romat()) Y <- cprod(romat()) # X,Y: 6x6 Hermitian quaternionic matrices ji(X,Y)
thus the Jordan identity is satisfied, to numerical precision. Now the same for 3x3 octonionic matrices:
X <- cprod(romat("octonion",5,3)) Y <- cprod(romat("octonion",5,3))# X,Y: 3x3 Hermitian octonion matrices ji(X,Y)
but
X <- cprod(romat("octonion",5,4)) Y <- cprod(romat("octonion",5,4))# X,Y: 4x4 Hermitian octonion matrices ji(X,Y)
showing that 4x4 octonionic Hermitian matrices do not satisfy the Jordan identity, even approximately.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.