degree | R Documentation |
weyl
objectThe degree of a monomial weyl object
x^a\partial^b
is defined as a+b
. The degree
of a general weyl object expressed as a linear combination of
monomials is the maximum of the degrees of these monomials. Following
Coutinho we have:
\mathrm{deg}(d_1+d_2)\leq\max(\mathrm{deg}(d_1)+
\mathrm{deg}(d_2))
\mathrm{deg}(d_1d_2) = \mathrm{deg}(d_1)+
\mathrm{deg}(d_2)
\mathrm{deg}(d_1d_2-d_2d_1)\leq\mathrm{deg}(d_1)+
\mathrm{deg}(d_2)-2
deg(S)
S |
Object of class |
Nonnegative integer (or -\infty
for the zero Weyl
object)
The degree of the zero object is conventionally
-\infty
.
Robin K. S. Hankin
(a <- rweyl())
deg(a)
d1 <- rweyl(n=2)
d2 <- rweyl(n=2)
deg(d1+d2) <= deg(d1) + deg(d2)
deg(d1*d2) == deg(d1) + deg(d2)
deg(d1*d2-d2*d1) <= deg(d1) + deg(d2) -2
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.