unsup_generate_data: Generate data for unsupervised normal examples

View source: R/unsup_generate_data.R

unsup_generate_dataR Documentation

Generate data for unsupervised normal examples

Description

Draw distribution-specific parameters theta_1, ..., theta_k ~ N(mu, tau^2). For each distribution j, draw observations Y_j1, ..., Y_jn_j ~ N(theta_j, sigma^2).

Usage

unsup_generate_data(k, n_vec, mu, tau_sq, sigma_sq = 1)

Arguments

k

Number of subjects

n_vec

Vector of length k, representing number of observations from each subject. We allow this to vary across subjects.

mu

Mean of parameter distribution

tau_sq

Variance of parameter distribution

sigma_sq

Variance of observations in given distribution

Value

A list of length k, where each item contains a vector of observations from a single distribution


RobinMDunn/ConformalTwoLayer documentation built on March 22, 2022, 6:38 p.m.