The goal of biasdetection is to identify different response styles and biases like lexicographic, non-trading, inconsitency, extreme response styles, midpoint response styles, random responding in any SP panel data.
You can install the released version of biasdetection from CRAN with:
install.packages("biasdetection")
And the development version from GitHub with:
# install.packages("devtools") devtools::install_github("Rupanjan22/biasdetection")
library(dplyr) library(stringr) library(rlist) library(biasdetection) csv_file <- "C:/Users/HP/Desktop/Study Project/data analysis/Package Environment/Survey Responses Modified.csv" excluded_time_groups <<- list(1) # excluding time_group1, as it included only introduction and description of the survey which people might overlook rr_data <- rr_function(csv_file, excluded_time_groups) create_plots_rr(rr_data, excluded_time_groups) likert_columns <- list("ParkingCosts.SQ001.", "CongestionCosts.SQ001.", "LowIncLikert.SQ001.", "AffordableTrLikert.SQ001.") max_value <- 5 min_value <- 1 ers_data <- ers_function(csv_file, likert_columns, max_value, min_value) create_plots_ers(ers_data) likert_columns <- list("ParkingCosts.SQ001.", "CongestionCosts.SQ001.", "LowIncLikert.SQ001.", "AffordableTrLikert.SQ001.") mid_value <- 3 mrs_data <- mrs_function(csv_file, likert_columns, mid_value) create_plots_mrs(mrs_data) total_scenarios <- list("S17","S18","S19","S20","S21","S22","S23","S24") attribute_cc <- "Cheapest Cost" attribute_short_cc <- "CC" scenarios_cc <- list("S17","S19","S20","S21","S22") alternatives_cc <- list("Alt2", "Alt1", "Alt2", "Alt1", "Alt2") attribute_ftt <- "Fastest Travel Time" attribute_short_ftt <- "FTT" scenarios_ftt <- list("S19","S20","S21","S22","S23") alternatives_ftt <- list("Alt2", "Alt1", "Alt2", "Alt2", "Alt1") attribute_hcr <- "Highest Congestion Reduction" attribute_short_hcr <- "HCR" scenarios_hcr <- list("S17","S18","S21","S22","S23","S24") alternatives_hcr <- list("Alt2", "Alt2", "Alt1", "Alt1", "Alt1", "Alt2") attribute_ppb <- "Percentage of People Benefiting" attribute_short_ppb <- "PPB" scenarios_ppb <- list("S17","S19","S20","S21","S23","S24") alternatives_ppb <- list("Alt1", "Alt1", "Alt2", "Alt1", "Alt2", "Alt2") lrs_data <- lrs_general_function(csv_file, total_scenarios, scenarios_cc, alternatives_cc, attribute_cc, attribute_short_cc) lrs_data <- lrs_general_function(csv_file, total_scenarios, scenarios_ftt, alternatives_ftt, attribute_ftt, attribute_short_ftt) lrs_data <- lrs_general_function(csv_file, total_scenarios, scenarios_hcr, alternatives_hcr, attribute_hcr, attribute_short_hcr) lrs_data <- lrs_general_function(csv_file, total_scenarios, scenarios_ppb, alternatives_ppb, attribute_ppb, attribute_short_ppb) total_scenarios <- list("S17","S18","S19","S20","S21","S22","S23","S24") attribute_ib <- "Inconsistent Bias" attribute_short_ib <- "IB" scenarios_ib <- list("S19","S20") alternatives_ib <- list(list("Alt2", "Alt2"),list("Alt1", "Alt1")) attribute_nt <- "Non Trading" attribute_short_nt <- "NT" scenarios_nt <- list("S17","S18","S19","S20","S21","S22","S23","S24") alternatives_nt <- list(list("Alt1", "Alt1","Alt1", "Alt1","Alt1", "Alt1","Alt1", "Alt1"), list("Alt2", "Alt2","Alt2", "Alt2","Alt2", "Alt2","Alt2", "Alt2"), list("Alt3", "Alt3","Alt3", "Alt3","Alt3", "Alt3","Alt3", "Alt3")) attribute_non_attendance_function(csv_file, total_scenarios, scenarios_ib, alternatives_ib, attribute_ib, attribute_short_ib) attribute_non_attendance_function(csv_file, total_scenarios, scenarios_nt, alternatives_nt, attribute_nt, attribute_short_nt)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.