avlr | R Documentation |
Estimate the parameters of time series models based on the Allan Variance Linear Regression (AVLR) approach
avlr(x, ...) ## Default S3 method: avlr( x, qn = NULL, wn = NULL, rw = NULL, dr = NULL, ci = FALSE, B = 100, alpha = 0.05, ... ) ## S3 method for class 'imu_avar' avlr( x, qn_gyro = NULL, wn_gyro = NULL, rw_gyro = NULL, dr_gyro = NULL, qn_acc = NULL, wn_acc = NULL, rw_acc = NULL, dr_acc = NULL, B = 100, alpha = 0.05, ... )
x |
A |
... |
Further arguments passed to other methods. |
qn |
A |
wn |
A |
rw |
A |
dr |
A |
ci |
A |
B |
A |
alpha |
A |
qn_gyro |
A |
wn_gyro |
A |
rw_gyro |
A |
dr_gyro |
A |
qn_acc |
A |
wn_acc |
A |
rw_acc |
A |
dr_acc |
A |
If the input x
is a vec
, then the function returns a list
that contains:
"estimates": The estimated value of the parameters.
"implied_ad": The Allan deviation implied by the estimated parameters.
"implied_ad_decomp": The Allan deviation implied by the estimated parameters for each individual model (if more than one is specified).
"av": The avar
object computed from the provided data.
If the input x
is of the class imu_avar
, then the function returns a list
that contains:
"gyro": The estimation results correseponding to the gyroscope component.
"acc": The estimation results correseponding to the accelerometer component.
"imu_av": The imu_avar
object computed based on the IMU data.
set.seed(999) N = 100000 Xt = rnorm(N) + cumsum(rnorm(N, 0, 3e-3)) av = avar(Xt) plot(av) # Input time series fit = avlr(Xt, wn = 1:8, rw = 11:15) fit # Input directly Allan variance fit = avlr(av, wn = 1:8, rw = 11:15) fit # Plot functions plot(fit) plot(fit, decomp = TRUE) plot(fit, decomp = TRUE, show_scales = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.