# Load packages library(CircStats) library(TwoCircles) # Sample sizes n1 = c(4,8) n2 = c(12,8) # Define alpha alpha = 0.05 # Define mu mu.max = pi mu.length = 20 mu = seq(from = 0, to = mu.max, length.out = mu.length) # Number of bootstrap replication B = 10^4 # Results res_rao = res_dixon = res_WW = matrix(NA, 2, mu.length) for (k in 1:2){ n = n2[k] m = n1[k] # Get critical values C.rao = get_critical_values(n = n, m = m, test = "rao", alpha = alpha)$brackets$c2 C.dixon = get_critical_values(n = n, m = m, test = "dixon", alpha = alpha)$brackets$c2 C.WW = get_critical_values(n = n, m = m, test = "ww", alpha = alpha)$brackets$c2 # Initialisation of results matrix rao_results = matrix(NA, B, mu.length) dixon_results = matrix(NA, B, mu.length) WW_results = matrix(NA, B, mu.length) # Start simu for (i in 1:length(mu)){ for (j in 1:B){ # Simulation sample x = rvm(n1[k], 0, 2) y = rvm(n2[k], mu[i], 2) # Compute Rao Stat rao_results[j,i] = circular_test(x, y, test = "rao")$stat >= C.rao # Compute Dixon Stat dixon_results[j,i] = circular_test(x, y, test = "dixon")$stat >= C.dixon # Compute van der Waerden Stat WW_results[j,i] = circular_test(x, y, test = "ww")$stat >= C.WW } } # Save results res_rao[k,] = 100*(apply(rao_results,2,mean)) res_dixon[k,] = 100*(apply(dixon_results,2,mean)) res_WW[k,] = 100*(apply(WW_results,2,mean)) }
# Sample sizes n1 = c(6,8) n2 = c(12,10) # Define alpha alpha = 0.05 # Define mu mu.max = 2 mu.length = 20 mu = seq(from = 0, to = mu.max, length.out = mu.length) # Number of bootstrap replication B = 10^4 # Results res_rao = res_dixon = res_WW = matrix(NA, 2, mu.length) for (k in 1:2){ n = n2[k] m = n1[k] # Get critical values C.rao = get_critical_values(n = n, m = m, test = "rao", alpha = alpha)$brackets$c2 C.dixon = get_critical_values(n = n, m = m, test = "dixon", alpha = alpha)$brackets$c2 C.WW = get_critical_values(n = n, m = m, test = "ww", alpha = alpha)$brackets$c2 # Initialisation of results matrix rao_results = matrix(NA, B, mu.length) dixon_results = matrix(NA, B, mu.length) WW_results = matrix(NA, B, mu.length) # Start simu for (i in 1:length(mu)){ for (j in 1:B){ # Control seed set.seed(j) # Simulation sample x = rvm(n1[k], 0, 2) y = rvm(n2[k], 0, 2 + mu[i]) # Compute Rao Stat rao_results[j,i] = circular_test(x, y, test = "rao")$stat >= C.rao # Compute Dixon Stat dixon_results[j,i] = circular_test(x, y, test = "dixon")$stat >= C.dixon # Compute van der Waerden Stat WW_results[j,i] = circular_test(x, y, test = "ww")$stat >= C.WW } } # Save results res_rao[k,] = 100*(apply(rao_results,2,mean)) res_dixon[k,] = 100*(apply(dixon_results,2,mean)) res_WW[k,] = 100*(apply(WW_results,2,mean)) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.