Description Usage Arguments Details Value Examples
Performs estimation of time series models by using the GMWM estimator.
1 2 3 4 5 6 7 8 9 10 11 |
mimu |
A |
model |
A |
CI |
A |
alpha_ci |
A |
n_boot_ci_max |
A |
stationarity_test |
A |
B_stationarity_test |
A |
alpha_near_test |
A |
seed |
An |
This function is under work. Some of the features are active. Others... Not so much.
The V matrix is calculated by: diag[(Hi-Lo)^2].
The function is implemented in the following manner: 1. Calculate MODWT of data with levels = floor(log2(data)) 2. Apply the brick.wall of the MODWT (e.g. remove boundary values) 3. Compute the empirical wavelet variance (WV Empirical). 4. Obtain the V matrix by squaring the difference of the WV Empirical's Chi-squared confidence interval (hi - lo)^2 5. Optimize the values to obtain theta^hat 6. If FAST = TRUE, return these results. Else, continue.
Loop k = 1 to K Loop h = 1 to H 7. Simulate xt under F_theta^hat 8. Compute WV Empirical END 9. Calculate the covariance matrix 10. Optimize the values to obtain theta^hat END 11. Return optimized values.
The function estimates a variety of time series models. If type = "imu" or "ssm", then parameter vector should indicate the characters of the models that compose the latent or state-space model. The model options are:
a first order autoregressive process with parameters phi, sigma^2
a guass-markov process beta, sigma[gm]^2
a drift with parameter omega
a quantization noise process with parameter Q
a random walk process with parameter sigma^2
a white noise process with parameter sigma^2
A mgmwm
object with the structure:
Estimated Parameters Values from the MGMWM Procedure
The data's empirical wavelet variance
Lower Confidence Interval
Upper Confidence Interval
Value of the objective function at Estimated Parameter Values
Summed Theoretical Wavelet Variance
Decomposed Theoretical Wavelet Variance by Process
Scales of the GMWM Object
Models being guessed
Alpha level used to generate confidence intervals
ts.model
supplied to gmwm
A new value of ts.model
object supplied to gmwm
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | # AR
set.seed(1336)
n = 200
data = gen_gts(n, AR1(phi = .99, sigma2 = 0.01) + WN(sigma2 = 1))
# Models can contain specific parameters e.g.
adv.model = gmwm(AR1(phi = .99, sigma2 = 0.01) + WN(sigma2 = 0.01),
data)
# Or we can guess the parameters:
guided.model = gmwm(AR1() + WN(), data)
# Want to try different models?
guided.ar1 = gmwm(AR1(), data)
# Faster:
guided.ar1.wn.prev = update(guided.ar1, AR1()+WN())
# OR
# Create new GMWM object.
# Note this is SLOWER since the Covariance Matrix is recalculated.
guided.ar1.wn.new = gmwm(AR1()+WN(), data)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.