knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

pillar:::set_show_source_hooks()
library(pillar)

What happens when a tibble is printed? This vignette documents the control flow and the data flow, explains the design choices, and shows the default implementation for the "tbl" class. It is mainly of interest for implementers of table subclasses. Customizing the formatting of a vector class in a tibble is described in vignette("pillar", package = "vctrs"). The different customization options are showcased in vignette("extending").

Requirements

Overview

The overall control and data flow are illustrated in the diagram below. Boxes are functions and methods. Solid lines are function calls. Dotted lines represent information that a function obtains via argument or (in the case of options) queries actively.

DiagrammeR::mermaid("format.mmd")

The pillar package uses debugme for debugging. Activating debugging for pillar is another way to track the control flow, see vignette("debugme") for details.

Initialization

A tibble is a list of columns of class "tbl_df" and "tbl". Printing is designed to work for non-data-frame table-like objects such as lazy tables. The print.tbl() method calls format() for the object and prints the output.

tbl <- tibble::tibble(a = 1:3, b = tibble::tibble(c = 4:6, d = 7:9), e = 10:12)
print(tbl, width = 23)
str(tbl)
pillar:::print.tbl

The format.tbl() method creates a setup object, and uses that object to format header, body and footer.

pillar:::format.tbl

While it's possible to extend or override these methods for your "tbl" subclass, often overriding the more specialized methods shown below is sufficient.

Setup

Most of the work for formatting actually happens in tbl_format_setup(). The desired output width is baked into the setup object and must be available when calling. Setup objects print like a tibble but with a clear separation of header, body, and footer.

setup <- tbl_format_setup(tbl, width = 24)
setup

A setup object is required here to avoid computing information twice. For instance, the dimensions shown in the header or the extra columns displayed in the footer are available only after the body has been computed.

The generic dispatches over the container, so that you can override it if necessary. It is responsible for assigning default values to arguments before passing them on to the method.

tbl_format_setup

The default implementation converts the input to a data frame via as.data.frame(head(x)), and returns an object constructed with new_tbl_format_setup() that contains the data frame and additional information. If you override this method, e.g. to incorporate more information, you can add new items to the default setup object, but you should not overwrite existing items.

pillar:::tbl_format_setup.tbl

At the core, the internal function ctl_colonnade() composes the body. Its functionality and the customization points it offers are detailed in the "Colonnade" section below.

Header, body, footer

The components of a tibble are formatted with tbl_format_*() generics, which also dispatch on the container to allow extension or overrides. They return a character vector, with one element per line printed. The setup object is required.

tbl_format_header(tbl, setup)
tbl_format_body(tbl, setup)
tbl_format_footer(tbl, setup)

(The body is returned as a classed object with a print() method, it is still a character() under the hood.)

class(tbl_format_body(tbl, setup))
typeof(tbl_format_body(tbl, setup))

Since most of the work already has been carried out in tbl_format_setup(), the default implementations mostly consist of code that styles and wraps the output.

pillar:::tbl_format_header.tbl
pillar:::tbl_format_body.tbl
pillar:::tbl_format_footer.tbl

Colonnade

The internal function ctl_colonnade() composes the body. It performs the following tasks:

  1. Create a pillar object for every column that fits, using ctl_new_compound_pillar(), ctl_new_pillar() and ultimately pillar() and pillar_shaft()
  2. Determine the number of tiers and the width for each tier
  3. Distribute the pillars across the tiers, assigning a width to each pillar.
  4. Format each pillar via its format() function, passing the now known width.
  5. Combine the formatted pillars horizontally.
  6. Combine the tiers vertically.
  7. Return the formatted body, and the columns that could not fit.

In the following, the first and the fourth steps are discussed.

Creating pillar objects

Each column in the tibble is passed to ctl_new_compound_pillar(), which eventually calls ctl_new_pillar() once or several times.

Compound pillars

The ctl_new_compound_pillar() generic dispatches on the container:

ctl_new_compound_pillar(tbl, tbl$a, width = 20)
ctl_new_compound_pillar(tbl, tbl$b, width = 20)

The default method distinguishes between compound and simple pillars. Data frame, matrix, and array columns are decomposed into sub-pillars and returned as a compound pillar. Regular vectors are forwarded to ctl_new_pillar(). Implementers of "tbl" subclasses will rarely if ever need to extend or override this method.

pillar:::ctl_new_compound_pillar.tbl

Simple pillars

The ctl_new_pillar() method is called for columns that are not data frames or arrays, and also dispatches over the container.

ctl_new_compound_pillar(tbl, tbl$a, width = 20)
pillar:::ctl_new_pillar.tbl

The default method calls pillar() directly, passing the maximum width available.

pillar

Formatting for title and type is provided by new_pillar_title() and new_pillar_type(). The body can be customized by implementing pillar_shaft() for a vector class, see vignette("pillar", package = "vctrs") for details. If title or type don't fit the available width, pillar_shaft() is never called.

This function now returns NULL if the width is insufficient to contain the data. It is possible to change the appearance of pillars by overriding or extending ctl_new_pillar().

Components

Both compound and simple pillar objects share the same structure and are ultimately constructed with new_pillar().

new_pillar

A pillar is stored as a list of components. For simple pillars each component has length one, for compound pillars all components have the same length. In the future, this restriction may be levied to support nested components, e.g. for column titles spanning multiple sub-pillars for compound pillars. The maximum width available for the simple pillar of for each sub-pillar of a compound pillar is also recorded.

Layout of the objects contained in a pillar

Formatting pillars

When a pillar object is constructed, it has a minimum a desired (maximum) width. Because it depends on the number and width of other pillar objects that may not be even constructed, the final width is not known yet. It is passed to format(), which uses the desired width if empty:

pillar:::format.pillar


SMAC-Group/simts documentation built on Sept. 4, 2023, 5:25 a.m.