calcPercChangeMCMC: calcPercChangeMCMC

Description Usage Arguments

View source: R/Module_calcPercChangeMCMC.R

Description

MCMC version of trend metric calculation (replaces old version based on PBSModelling and Metropolis algorithm)

Usage

1
2
3
4
5
6
7
8
9
calcPercChangeMCMC(
  vec.in,
  model.in = NULL,
  perc.change.bm = -25,
  na.skip = FALSE,
  out.type = "short",
  mcmc.plots = FALSE,
  convergence.check = FALSE
)

Arguments

vec.in

vector with numeric values

model.in

if NULL, use the BUGS code in the built in function trend.bugs.1()

perc.change.bm

benchmark for Prob(Decl>BM), default = -25

na.skip

if TRUE, skip the calculations when vec.in contains any NA

out.type

"short" or "long". "short" gives summary table of posterior plus "PercChange" and "ProbDecl" "long" also includes the full mcmc samples and the jags output object

mcmc.plots

if true, create the standard series of MCMC diagnostic plots Note that these are printed to the default device (i.e. need to external wrap the function call inside a pdf /dev.off call) To get a plot of the model fit, run this function with out.type = "long", and then use plot.trend.fit().

convergence.check

if TRUE, do an automated convergence check


SOLV-Code/MetricsTest documentation built on Feb. 19, 2021, 10:12 p.m.