We consider a multivariate mixed model of the form [ \begin{align} y_{ij} &= a_{i} + \epsilon_{ij}\ a_{i} &\sim \operatorname{N}(\mu,\mathsf{U})\ \epsilon_{ij} &\sim \operatorname{N}(0,\mathsf{V}) \end{align} ] where each (y_{ij}) is a (q) dimensional multivariate response such that (y_{ij}) is the (j^{\mathrm{th}}) response from subject (i^{\mathrm{th}}), (\mathsf{U}) is the variance of the random effects (a_{i}), and (\mathsf{V}) is the error variance.

EM Algorithm

To apply the EM algorithm we must compute the expected values of the sufficient statistics [ \sum_{ij} (y_{ij}-a_{i})(y_{ij}-a_{i})^{T} \qquad \sum_{i} (a_{i}-\mu)(a_{i}-\mu)^{T}\qquad \sum_{i} a_{i} ] conditional on the observed data (y).

The updated model parameters are then estimated as [ \begin{align} \mu &= \frac{\operatorname{E}\left (\sum_{i} a_{i} \middle| y \right )}{m}\ U & = \frac{\operatorname{E}\left (\sum_{i} (a_{i}-\mu)(a_{i}-\mu)^{T} \middle| y \right )}{m}\ V & = \frac{\operatorname{E}\left(\sum_{ij} (y_{ij}-a_{i})(y_{ij}-a_{i})^{T} \middle| y \right )}{n}\ \end{align} ]

The conditional distribution (p(a_{i}|y)) can be deduced from the from the conditional distribution (p(a|y)). Writing [ a_{i} | y \sim \operatorname{N}(\alpha_{i},A_{i}) ] we deduce that [ \operatorname{E}\left (\sum_{i} a_{i} \middle| y \right )= \sum_{i} \alpha_{i} ] and [ \operatorname{E}\left (\sum_{i} (a_{i}-\mu)(a_{i}-\mu)^{T} \middle| y \right )= \sum_{i} \left ( (\alpha_{i}-\mu) (\alpha_{i}-\mu)^{T} + A_{i} \right ) ] while [ \sum_{ij} (y_{ij}-a_{i})(y_{ij}-a_{i})^{T} = \sum_{i} \left ( \sum_{j} (y_{ij}-\bar{y}{i.})(y{ij}-\bar{y}{i.})^{T}+n{i}(\bar{y}{i.}-a{i})(\bar{y}{i.}-a{i})^{T} \right ) ] so that [ \begin{multline} \operatorname{E}\left(\sum_{ij} (y_{ij}-a_{i})(y_{ij}-a_{i})^{T} \middle| y \right ) =\ \sum_{i} \left (\sum_{j} (y_{ij}-\bar{y}{i.})(y{ij}-\bar{y}{i.})^{T}+ n{i}\left ( (\bar{y}{i.}-\alpha{i})(\bar{y}{i.}-\alpha{i})^{T} + A_{i} \right ) \right ) \end{multline} ]

Conditional Distribution

The EM Algorithm requires the conditional expectations of the sufficient statistics given the observed data (y). The required conditional expectations can all be computed from the conditional distribution (p(a|y)) of (a) given the observed data (y).

Vector representation

To compute the conditional distribution (p(a|y)), we write the model in a vector format [ y = Z a + \epsilon ] where (y), (e) and (a) are vectors constructed as the concatenations of the (y_{ij}), ( \epsilon_{ij}) and (a_{i}) respectively, (Z) is a block structured design matrix [ Z = \begin{bmatrix} I & 0 & 0 &\ldots & 0\ \vdots & \vdots & \vdots & & \vdots\ 0 & I & 0 &\ldots & 0\ \vdots & \vdots & \vdots & & \vdots\ 0 & 0 & I &\ldots & 0\ \vdots & \vdots & \vdots & & \vdots\ 0 & 0 & 0 & \ldots & I\ \end{bmatrix} ] that disseminates the elements of (a) to the appropriate elements of (y), and [ \begin{align} a &\sim \operatorname{N}(X \mu,U)\ \epsilon &\sim \operatorname{N}(0,V) \end{align} ] where (X) is a block structured design matrix that disseminates the elements of (\mu) to the appropriate elements of (a) and (U) and (V) are the block diagonal matrices [ \begin{gather} U = \begin{bmatrix} \mathsf{U}&&&&\ &\mathsf{U}&&&\ &&\ddots&&\ &&&\mathsf{U}&\ &&&&\mathsf{U} \end{bmatrix} & V = \begin{bmatrix} \mathsf{V}&&&&\ &\mathsf{V}&&&\ &&\ddots&&\ &&&\mathsf{V}&\ &&&&\mathsf{V} \end{bmatrix} \end{gather} ]

This implies that [ \begin{bmatrix} a \ \epsilon \end{bmatrix} \sim \operatorname{N} \left ( \begin{bmatrix} X\mu \ 0 \end{bmatrix}, \begin{bmatrix} U & 0 \ 0 & V \end{bmatrix} \right ) ]

Conditional for (a)

To compute the conditional distribution of (a) given (y), note that [ \begin{bmatrix} a \ y \end{bmatrix} = \begin{bmatrix} I & 0 \ Z & I \end{bmatrix} \begin{bmatrix} a \ \epsilon \end{bmatrix} ] and [ \begin{bmatrix} I & 0 \ Z & I \end{bmatrix} \begin{bmatrix} U & 0 \ 0 & V \end{bmatrix} \begin{bmatrix} I & 0 \ Z & I \end{bmatrix}^{T} = \begin{bmatrix} U & 0 \ ZU & V \end{bmatrix} \begin{bmatrix} I & Z^{T} \ 0 & I \end{bmatrix} =\begin{bmatrix} U & UZ^{T} \ ZU & ZUZ^{T}+V \end{bmatrix} ] so that [ \begin{bmatrix} a \ y \end{bmatrix} \sim \operatorname{N} \left ( \begin{bmatrix} X \ ZX \end{bmatrix} \mu, \begin{bmatrix} U & UZ^{T} \ ZU & ZUZ^{T}+V \end{bmatrix} \right ). ]

The conditional distribution of (a) given (y) is [ a | y \sim \operatorname{N} \left ( X\mu+UZ^{T}(ZUZ^{T}+V)^{-1} (y - ZX\mu), U - UZ^{T} (ZUZ^{T}+V)^{-1} ZU \right ). ]

Using the Woodbury identities this can be written in the form [ a | y \sim \operatorname{N} \left ( X\mu + (U^{-1}+Z^{T}V^{-1}Z)^{-1}Z^{T}V^{-1} (y - ZX\mu), (U^{-1}+Z^{T}V^{-1}Z)^{-1} \right ). ]

Block Matrices

The block structured design and covariance matrices (Z), (U) and (V) can be written as kronecker products [ \begin{align} X &= I_{m} \otimes I_{q}\ Z &= G \otimes I_{q}\ U &= I_{m} \otimes \mathsf{U}\ V &= I_{n} \otimes \mathsf{V}\ \end{align} ] where (n) denotes the total number of observations, (q) the dimension of each observation, (I_{r}) the (r \times r) identity matrix, (1_{r}) a column vector of (r) ones, (G) a matrix of ones denoting the structure of observations within subjects, (\mathsf{U}) the covariance matrix of the random effects and (\mathsf{V}) the covariance of a single observation about its mean.



SWotherspoon/MVNSeq documentation built on June 1, 2022, 10:49 p.m.